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Since (;") is a polynomial of degree m in x, f;, is a polynomial of degree d.

Also solved by B. M. Abrego, S. Amghibech (Canada), D. Beckwith, R. Chapman (U. K.), Y. Dumont (France),
H. Gould, T. Hermann, J. H. Lindsey II, O. P. Lossers (Netherlands), N. C. Singer, A. Stadler, J. H. Steelman,
R. Stong, L. Zhou, BSI Problems Group (Germany), GCHQ Problem Group (U. K.), and the proposer.

The Envelope, Please

10990 [2003, 59]. Proposed by Rick Mabry, LSUS, Shreveport, LA. The n + 1 Bern-
stein polynomials of degree n are defined by

bux(x) = (Z)x"(l -x0)"* O0<k<n).

When all n + 1 polynomials are plotted on the same graph for large fixed n over the
interval 0 < x < 1, an ‘upper envelope’ begins to be seen. [A figure was given which
is here omitted.] Let 8(x) = lim,_, o, /7 MaXo<t<n by 1 (x). Find a closed-form expres-
sion for B(x).

Bernardo M. Abrego, California State University, Northridge, CA. The closed-form
expression is B(x) = 1/4/2mx(1 —x). Let 0 < x < 1 and 1 < k < n, and observe
that

by 1 (x) _x(n—k+1) 14 (n+Dx —k

bui-1(x)  (A—-xk k(1 —x)
Thus if k < x(n + 1) then b, x(x) > b,x—1(x), and if k > x(n + 1) then b, ;(x) <
by x—1(x). Hence, if m = m(n) is the unique integer such that

xn+1)—1l<m=<x(n+1), 1

then maxo<k< by k (X) = by m(x), and B(x) = lim,_, o \/nBy m (X).
By Stirling’s formula (n! ~ /27w n(n/e)") and the fact that m ~ xn as n — oo, we
have

(o) ~ e
m mm(n — m)y""/2armn —m)_

which leads to

n+l,m 1— n—m
lim /by m(x) = lim n X7 - x)
n—o0

w00 (1 — )y 2 = m)
Now (1) is equivalenttom/(n + 1) <x < (m+1)/(n + 1), so

n+1 1 - n—+1
<
am+1Dnm—m+1) 2ax(1—=x) L2am@n —m)
and
nn+1 (n + 1— m)n—m nn+1xm(1 _ x)n—m nn+1 (m + l)m
< .
(n+ D*(n — m)r—m m"(n —m)r—m (n+ 1)rmm
Thus 1//2nm(n —m) ~ 1/((n + 1)4/27x(1 — x)), hence
1+ 1 \n—m 1+ 1\m
lim ( T =) < lim /nb, ,(x) < lim 5+1 ’”) )
e (14 0 amx(T—x) " nre (14 D" V2rx (T =x)
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Finally, since lim,_, » (1 + %)" = e, we have B(x) = 1//27x(1 — x).

Editorial comment. The proposer notes a tempting but fallacious line of reasoning
(adopted by several would-be solvers): Maximize b, ;(x) by setting x = k/n, forming
the parametric curves (k/n, «/nb, i (k/n)). Then let n go to co. However, this does not
yield any information about envelopes. The proposer gives as an example the curves

. _ 2012
_ sin@@(( — o)x + cx7)) (x €[0,1],c € (-1, 1)),

1+ ¢2

__——& ».

S Y, ",,,
—_ —:\ \\ 'sl{{flﬁ.’/‘%\\\
.

in which the relative maxima do not trace out the envelope. On the other hand, one
can deduce the desired result from standard facts in probability theory such as the de
Moivre-Laplace local limit theorem; several solvers referenced Feller’s An Introduc-
tion to Probability Theory and Its Applications, third edition, chapter 7.

Also solved by S. Amghibech (Canada), R. Chapman (U. K.), D. Donini (Italy), Y. Dumont (France), T. Her-
mann, J. Kuplinsky, E. Lee, J.H. Lindsey II, O.P. Lossers (Netherlands), A. Nijenhuis, M. Pinsky, N.C. Singer,
A. Stadler (Switzerland), R. Stephens, R. Stong, E.I. Verriest, L. Zhou, BSI Problems Group (Germany),
GCHQ Problem Solving Group (U. K.), NSA Problems Group, and the proposer.

A Nonholomorphic Map of the Disk

10991 [2003, 155]. Proposed by Raymond Mortini, Départment de Mathematiques,
Université de Metz, lle du Saucy, France. For complex a,z € D = {s: |s| < 1}, let

F(a,z) = ]“:a - bea map of D onto . Let p denote the pseudohyperbolic distance,

defined by p(a, b) = |5

(a) Prove that there exists a function C: D — R* so that p(F(a,z), F(b, 7)) <
C(2)p(a, b) forevery a, b,z € D.

(b) Find the minimal value of C(z) for which this bound holds.

Solution by S. Amghibech, Québec, Canada. First note two identities:
1 = F@,F b, 2| = (1 - |F@2P) (1 - |F®, ) +|F(a,2) - Fb,2)|",
(1= 1F@ P)|1 +az| = (1 = aP?)(1 = 1zP).

From these we obtain

Y
(1= pGa, )1 —ab|*(1 — |2P)* + ¥

p(F(a,2), F(b, 7))’ =

where Y = |(1 + bz)(a + 2) — (1 + az)(b + z)|*. Since

Y a-b g

— a— 2 4

— =1 —_ 2 < (1 2 = (1 s
la — b2 +az a_b(az+z) —( +|Z|+|Z|+|Z|) ( +|Z|)
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