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In all that follows,A is an arbitrary convex plane quadrilateral; let’s call such a polygon
a quad. We let the vertices of A be given cyclically by the four-tuple (A0, A1, A2, A3)

and name a midpoint Mi on each segment (Ai , Ai+1), taking all subscripts modulo
4, as in FIGURE 1. We then crosscut quad A by drawing medians (Ai , Mi+2). These
medians intersect one another at the vertices of a new “inner quad” B in the interior of
the “outer quad” A.
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Figure 1 Crosscut quad A with shaded inner quad B

Our results are inspired by the well known, pretty result ([1, p. 49], [8, p. 22]) that
if A is a square, then

|A| = 5 |B| , (1)

where |·| denotes area. (See FIGURE 2. In this case it is clear that B is also a square.)
It follows from familiar facts about shear transformations that (1) remains true when

A is a parallelogram. That (1) does not hold in general is easily seen by letting one
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Figure 2 The classic crosscut square
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vertex of A approach another, in which case the shape of A approaches that of a
triangle. In such a limiting case we get

|A| = 6 |B| , (2)

a fact that we leave as an easy exercise for the reader. (See FIGURE 3, where our four
medians have coalesced into two medians of a triangle, these meeting at the triangle’s
centroid.) We will continue to refer to such a figure as a quad, albeit a degenerate one,
and this will be the only type of degeneracy we need to consider—two vertices of a
quad merging to form a nondegenerate triangle. Otherwise, a (nondegenerate) quad
shall be convex with four interior angles strictly between zero and 180 degrees.

A0 A1

A2A3

Figure 3 A degenerate case of two coincident vertices

It will be shown presently that the general case lies between (1) and (2). Actually,
we prove a bit more:

THEOREM 1. For an arbitrary outer quad A, the following properties hold.

(a) The inner quadrilateral B is a quad and

5 |B| ≤ |A| ≤ 6 |B| . (3)

(b) |A| = 5 |B| if and only if B is a trapezoid.

(c) |A| = 6 |B| if and only if A is a degenerate quad with two coincident vertices.

Theorem 1 has gathered dust since 2000 (or earlier—see the Epilogue) while the
author occasionally tried, to no avail, to find a “Proof Without Words” (PWW) of (3)
or some other visual proof, as is done in [1] and [8] for the case of a square. Later
in this note a fairly visual proof will be given that B being a trapezoid implies that
|A| = 5 |B|, but that is far from the entire theorem. In part, the purpose of this note is
to open this challenge to a wider audience.

In the meantime, we do have a few other visual propositions to offer. In the fol-
lowing three results and their proofs (WW), the values being added, subtracted, and
equated are the areas of the shaded regions of an arbitrary (fixed) quad A.

PROPOSITION 1. (STRIPS EQUAL HALF OF QUAD)

= = =
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PWW of Proposition 1.

= = 1
2

= =

PROPOSITION 2. (PAIRS OF OPPOSING FLAPS ARE EQUAL)

=

PWW of Proposition 2.

– = –

PROPOSITION 3. (CORNERS EQUAL INNER QUAD)

=

PWW of Proposition 3.

– = –

=

The greatest visual appeal in this note might be concentrated in Proposition 3. It
is a challenge (left to the readers and unfulfilled by the author) to prove some of the
other facts in more visual ways, especially Theorem 1. Meanwhile we apply some easy
vector-based methods that have some sneaky appeal of their own. Complex variables
can be used to the same effect.

Notation, convention, and basic calculation First let’s set some notation. Given a
sequence P0, P1, . . . , Pn of points in R2, we let (P0, P1, . . . , Pn) denote either the
ordered tuple of points or the polygon formed by taking the points in order. We shall
assume that when (P0, P1, . . . , Pn) is given, the sequence is oriented positively (coun-
terclockwise) in the plane, with this one exception: If the tuple is a pair, then we con-
sider it directed so that we may use it as a vector as well as a line segment, the context
making clear which. So, for instance, we write A = (A0, A1, A2, A3), and likewise we
take B = (B0, B1, B2, B3) for our inner quad, where Bi = (Ai , Mi+2) ∩ (Ai+1, Mi+3).
We let |(P0, P1, . . . , Pn)| denote the area of the polygon (P0, P1, . . . , Pn), but |(P, Q)|
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will denote the length of a segment or vector (P, Q). Likewise, |w| will denote the
length of any vector w. As usual, a point P is identified with the vector (O, P) via the
usual canonical identification once an origin O is selected.

Areas are calculated using the magnitude of the cross product. It will be convenient
to abuse notation slightly and, for x = 〈x1, x2〉 and y = 〈y1, y2〉, set x× y = x1 y2 −

x2 y1.
The area of any triangle is then |(x, y, z)| = 1

2 (y− x)× (z− x), which is positive
because of our orientation convention mentioned earlier.

For arbitrary P0, P1, P2, P3, the polygon formed from the sequence is a nondegen-
erate convex quadrilateral (and therefore also simple, that is, with no self-crossings)
if and only if (Pi , Pi+1)× (Pi+1, Pi+2) has constant positive or constant negative sign
for each i (mod 4). (An analogous statement cannot be made for convex n-gons with
n ≥ 5—consider the pentagram, or, if the fewest crossings are desired, have a look
at a “foxagon” like (〈0, 0〉, 〈3, 9〉, 〈−1, 5〉, 〈1, 5〉, 〈−3, 9〉).) We will appeal to cross
products to verify the convexity of a certain octagon that arises in our figures.

Diagonals rule Any two fixed, independent vectors u and v in the plane correspond
to the diagonals of infinitely many different quadrilaterals, as is illustrated in FIG-
URE 4, where the diagonals of the quadrilaterals shown generate identical vectors.
Clearly, such quadrilaterals need not be quads—shown in that figure are a nonconvex
and a nonsimple quadrilateral (neither are quads) and two quads, one being a parallel-
ogram. To ensure convexity, it is necessary and sufficient that the diagonals intersect
each other. We accomplish this in the following way. Let the origin O be the intersec-
tion of the diagonals, and for scalars s and t , set

(A0, A1, A2, A3) = ((1− s)u, (1− t)v,−s u,−t v), (4)

as in FIGURE 5. When s and t in [0, 1] the quadrilateral will be convex; it will be a
quad when s and t are in (0, 1). The diagonals (A0, A2) and (A1, A3) have lengths |u|
and |v|, respectively.
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Figure 4 Two linearly independent
vectors u and v form (nonuniquely) the
diagonals of a quadrilateral
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–su
–tv

A0 A1

A2

A3

Figure 5 Splitting u, v with s, t to spec-
ify a unique quad

It is a simple matter to compute the area of any simple polygon by triangulation
(partitioning the polygon into triangles). For a simple, positively oriented quadrilateral
Q = (Q0, Q1, Q2, Q3) one may also use the familiar fact that |Q| = 1

2 (Q0, Q2) ×

(Q1, Q3). It is then clear that in the case of our main quad, |A| = 1
2 u× v.

We exploit the fact that all of the vertices of the polygons that appear in the context
of crosscut quads are linear combinations of u and v, with rational functions of s, t

Rick
Highlight
This should be the vector v, not u!
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as coefficients. Therefore, since u × u = v × v = 0, all of our polygonal areas take
the form F(s, t) u× v for some rational function F of s, t . All our results derive from
F(s, t), as we could scale our figures to have u× v = 1.

Proof of Theorem 1. First note that B is indeed convex, being the intersection of
two (clearly) convex sets. To compute |B|, we first find expressions for the points Bi .
First, we have that B0 = (A0, M2) ∩ (A1, M3), where Mi =

1
2 (Ai + Ai+1). There are

then scalars q, r ∈ (0, 1) for which

B0 = A0 + q(M2 − A0) = A1 + r(M3 − A1).

This implies that

q

2

(
(A2 − A0)+ (A3 − A0)

)
= A1 − A0 +

r

2

(
(A3 − A1)+ (A0 − A1)

)
,

hence, by (4),

q

2

(
−u− t v− (1− s)u

)
= (1− t)v− (1− s)u+

r

2

(
−v+ (1− s)u− (1− t)v

)
.

The linear independence of u and v allows us to separately equate their coefficients to
solve for q and r , obtaining

q = 2(1− s)/(4− 2s − t) and r = 2(2− s − t)/(4− 2s − t).

(The most diligent of readers will pause to verify that both q and r lie in (0, 1) when s
and t do.) We can use q (say) to calculate

B0 = A0 + q(M2 − A0) =
(1− s)(2− s − t)

4− 2s − t
u−

(1− s)t

4− 2s − t
v.

Once B0 is obtained, the symmetry of our construction in FIGURE 5 can be used to
compute the remaining Bi —our convention for indexing points ensures that Pi+1 =

〈−y(t, 1− s), x(t, 1− s)〉 when Pi = 〈x(s, t), y(s, t)〉 is given.
We can now calculate the area of B. We could use the formula for the area of a

quadrilateral already mentioned, but instead we’ll employ the result of Proposition 3,
as we’ll make use of the result later. Denoting by Ci the corner triangle (Ai , Bi , Mi−1),
we easily compute

|C0| = |(A0, B0, M3)| =
(1− s)t

4(4− 2s − t)
(u× v). (5)

Again, symmetry can be used to compute the remaining three corner areas from the
first; generally, if |Ri | = g(s, t), then |Ri+1| = g(t, 1− s). (The fact that (−v)× u =
u× v is used for this.)

Now we break out the algebra software (if we haven’t already) and find, using |B| =
|C0| + |C1| + |C2| + |C3|, that

6 |B| − |A| =
5

(
2− 3s + s2

+ 4s t − 2t2
) (

4s + t − 2s2
− 4s t + t2

)
2(2− s + 2t)(3+ s − 2t)(4− 2s − t)(1+ 2s + t)

(u× v). (6)

It is now a routine exercise to show that for s, t ∈ (0, 1), each of the factors above
is positive. This shows that 6 |B| ≥ |A| . Similarly, we can compute

|A| − 5 |B| = (1− 3s + t)2(2− s − 3t)2

2(2− s + 2t)(3+ s − 2t)(4− 2s − t)(1+ 2s + t)
(u× v), (7)
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which is clearly nonnegative on [0, 1] × [0, 1]. Part (a) of the theorem is now estab-
lished.

Part (b) of the theorem is fairly easy in view of the fact that (7) shows that
|A| − 5 |B| = 0 if and only if 1− 3s + t = 0 or 2− s − 3t = 0. Consider the easily
verified fact that

(B0, B1)× (B0, B3)

= −
(1− 3s + t)

(
2s + t − s2

− st + t2
) (

2+ s − 2t − s2
− st + t2

)
(2− s + 2t)(3+ s − 2t)(4− 2s − t)(1+ 2s + t)

(u× v).

None of the factors, other than 1− 3s + t , is ever zero for s, t ∈ (0, 1); and it follows
that for a crosscut quad A, the segments (B0, B1) and (B2, B3) are parallel if and only
if 1− 3s + t = 0. Similarly (after all, there is a symmetry at work here), one finds that
(B1, B2) is parallel to (B0, B4) if and only if 2− s − 3t = 0. This establishes part (b).
(We can also see from this that B is a parallelogram if and only if 1− 3s + t = 0 =
2− s − 3t , which happens if and only if s = t = 1/2, which is in turn true if and only
if A is a parallelogram.)

Finally, for part (c), it was probably noticed earlier that for all s, t ∈ [0, 1], all the
factors in the denominator of (6) are ≥ 1 and that the numerator is zero if and only if
〈s, t〉 is one of 〈0, 0〉, 〈1, 0〉, 〈0, 1〉, or 〈1, 1〉. It is clear from our construction that each
of these four cases is equivalent to the (degenerate) situation of the merging of two
vertices of A. (For example, A2 = A3 when 〈s, t〉 = 〈0, 0〉, as in FIGURE 3.)

Diagonal triangles There are probably many amusing relationships lurking among
the various pieces of our crosscut quad. As an example (found, as with the others, by
messing around with Geometer’s Sketchpad), our next theorem contains a cute result,
whose visual proof, too, we abandon to the reader.

First a few easy preliminaries. The diagonals of a quad partition the quad into four
triangles. With O being the intersection of the diagonals of A (the origin mentioned
earlier), we define the diagonal triangles Di = (Ai , O, Ai−1). If the diagonals of A are
added to the picture, as in FIGURE 6, it is clear that the points Bi must always lie within
the respective Di . Incidentally, it is a simple exercise to show that the centroids Di of
the Di form a parallelogram whose area is (2/9) |A|. (Engel [4, prob. 69, sec. 12.3.1]
shows that this result holds when O is any point in the quad.) Also known is that the
products of the areas of opposing diagonal triangles Di are equal. That is,

|D1| |D3| = |D0| |D2| , (8)

which is easily checked by noting |D0| = (1− s) t/2 and its cyclic counterparts. (A
PWW lurks in FIGURE 5. In fact, (8) holds when O is any point on a diagonal of a
quadrilateral A0 A1 A2 A3, regardless of whether the quadrilateral is convex or simple.
Cross products are superfluous.)

Corner triangles Another odd relationship involves ratios of areas of corner triangles
to diagonal triangles. It may be unrelated to (8), but it has a similar flavor.

THEOREM 2. For an arbitrary quad A,

|D0|

|C0|
+
|D2|

|C2|
=
|D1|

|C1|
+
|D3|

|C3|
= 10.

Proof. Notice that the areas of the Di are the numerators of the formulas we have
for the areas of respective triangles Ci (see (5)). These cancel in each of the ratios
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Figure 6 The Di, individually shaded,
and the parallelogram of their centroids
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Figure 7 A convex octagon of cen-
troids

|Di | / |Ci |. Thus,

|D0|

|C0|
+
|D2|

|C2|
= 2(4− 2s − t)+ 2(1+ 2s + t) = 10.

It is unnecessary to write a similar formula for the second sum, as it follows by sym-
metry.

A convex octagon In FIGURE 7, the centroids of the nine partitioned regions of
our crosscut quad are shown. The outer eight form an octagon: Let Fi = (Ai , Mi ,

Bi+1, Bi ), i = 0, 1, 2, 3, denote the flaps and let Ci and Fi denote the centroids of the
corners Ci and the flaps Fi , respectively.

THEOREM 3. The octagon O = (C0, F0, C1, F1, C2, F2, C3, F3) is convex.

All we offer toward a proof of the convexity is the suggestion already given con-
cerning cross products. (The author’s colleague Zsolt Lengvárszky has a nice visual
proof.) It suffices to show that (C0, F0)× (F0, C1) > 0 and (F0, C1)× (C1, F1) > 0
for every choice of s, t ∈ (0, 1). It turns out that, using our machinations here, the
latter of these inequalities (which would appear from FIGURE 7 to be the more sensi-
tive of the two) is fairly easy, as one gets a rational function of s, t with nice, positive
polynomial factors. The former also factors into positive polynomial factors, although
more work is involved and one of the factors is of degree five in s, t . We claim very
tight bounds on the octagon’s relative area:

1.888 · · · =
270

143
≤
|A|
|O| ≤

216

113
= 1.911 . . . ,

where the lower bound occurs when A is a parallelogram, the upper when A becomes
degenerate. (We provide no proof for this conjecture, but the author will attempt one
if offered a sufficient cash incentive.)

A look at FIGURE 6 suggests that the centroid of each of the diagonal triangles Di is
inside the corresponding Fi . This too is easily shown using cross products; it suffices
to note that (A0, M2)× (A0, D0) = st/6 > 0 and that D0 lies on (O, M3). The reader
is challenged to give a nice visual proof of this fact, but it cannot be denied that using
cross products is very quick indeed.

A visual proof for the trapezoid case Here now is the visually oriented proof,
mentioned earlier, that |A| = 5 |B| when B is a trapezoid. (This is one direction of
Theorem 1(b).) In FIGURE 8, triangle (M1, A2, A3) is rotated 180◦ about M1 forming
(M1, A1, A′3), and (M3, A0, A1) is likewise rotated about M3 to form (M3, A3, A′1).
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Figure 8 B is a trapezoid with (B1, B2) ‖ (B0, B3)

(For a point P , denote its rotated counterpart by P ′.) Now let h (not annotated)
be the perpendicular distance between segments (B1, B2) and (B0, B3), and let
a = |(B ′0, A3)|, b = |(B0, B3)|, c = |(B1, B2)|, and d = |(A1, B ′2)|. Then it is evi-
dent that a + d = b + c, and we therefore have

|A| =
∣∣(B ′0, A3, A′1)

∣∣+ ∣∣(B ′0, A1, B ′2, A3)
∣∣+ ∣∣(A1, A′3, B ′2)

∣∣
=

1

2
a(2h)+

a + d

2
(3h)+

1

2
d(2h)

= 5

(
b + c

2
h

)
= 5 |B| .

If a condition on A itself is desired in order that B be a trapezoid, perhaps the
following will satisfy. For fixed A0, A1, A3, we will have (M0, A2) ‖ (M2, A0) if and
only if A2 lies on the line joining the midpoint M0 of (A0, A1) and the point that lies
one-third the way from A1 to A3. This will force (B1, B2) ‖ (B0, B3), as in FIGURE 8.
Cyclically permute vertices for the remaining possibilities.

One can think of immediate variations and generalizations to the problems explored
in this note. Note that there is a certain chirality or handedness in our choice of cross-
cutting; FIGURE 9 gives a version with alternate medians. We leave it as an exercise to
prove that the areas of the inner quads of the two variations are equal (for a fixed outer
quad) if and only if either the outer quad is a trapezoid or one of the diagonals of the
outer quad bisects the other. Is there some visual proof of that?

Figure 9 The original and alternate crosscut quads
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To generalize, one can use other cevians in place of our medians, by letting Mi =

(1− r)Ai + r Ai+1 for some fixed ratio r other than r = 1/2, as in FIGURE 10. It is
then not difficult to establish a generalization to Theorem 1, in which the minimum
and maximum for |A| / |B| are replaced by (r 2

− 2r + 2)/r 2 and (r 2
− r + 1)/r 3, re-

spectively. One can make more cuts to form an n-crosscut, skewed chessboard, as
in FIGURE 11 (where n = 4). Obvious analogs of Theorems 1 and 2, and Propo-
sitions 2 and 3, hold for such multi-crosscuttings. For more generality, try m × n-
crosscut, skewed chessboards. An article by Hoehn [6] suggests further problems. As
for a multi-crosscut generalization of Theorem 3, well, let’s just say that what might
seem an obvious generalization is not. (Not what? Not true or not obvious? The in-
trepid reader should venture forth.)

Figure 10 Crosscutting cevians
with r = 1/4

Figure 11 4-crosscut skewed
chessboard

Epilogue It turns out that a form of Theorem 1 has appeared earlier. Our diligent
referee found a reference to it [3, p. 132 (item 15.19)], which in turn names a problems
column as a source [9]. For the same geometric configuration as ours, but using our
notation, the statement in [3] gives the inequality 5 |B| ≤ |A| < 6 |B| (so it doesn’t
count the degenerate case). However, [3] also states that |A| = 5 |B| “only for a par-
allelogram.” This is incorrect, as we have shown that this equality holds if and only if
B is a trapezoid, in which case neither A nor B need be a parallelogram. (It isn’t clear
in [3] whether A or B is intended as a parallelogram, but they turn out to be equiva-
lent conditions.) Thus it was necessary to track down the original problem in [9] for
comparison.

The problems column in question was in Gazeta Matematică, which is known to
every Romanian mathematician, and is near and dear to most. It is one of the jour-
nals of Societatea de Ştiinţe Matematice din România (the Romanian Mathematical
Society) [2]. The problem was posed by the eminent Romanian mathematician, Tiberiu
Popoviciu (1906–1975), whose contributions to mathematics are too numerous to men-
tion here. He is immortalized also by the Tiberiu Popoviciu Institute of Numerical
Analysis, which he founded in 1957 (a short biography appears on the institute’s web-
site [7]).

Locating the problem, printed in 1943 (surely a difficult year), was not easy, as no
library on the WorldCat R© network has the volume. Fortunately, the entire collection
is available in electronic form [5]. The generous help of Eugen Ionascu (Columbus
State University) was enlisted, first to find someone who has access to the electronic
format, and second for a translation into English (the text is Romanian). The translation
revealed that, in Gazeta, Popoviciu gives the inequality as 5 |B| ≤ |A| ≤ 6 |B| and
challenges the reader to prove the inequality for all convex quadrilaterals A and to
determine when equality holds. That seems to be the last mention of the problem. If
there is a follow-up in later issues of Gazeta Matematică, it is hiding well. (It would
be nice to know the solution intended by Popoviciu, which is likely more elegant than
ours.)
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Hearing of the search for the 1943 Gazeta, Aurel Stan (at The Ohio State University
at Marion) had the following reaction. “Gazeta Matematică is one of the dearest things
to my heart, although for many years I have not opened it, and I feel that I have betrayed
it. It is one of the oldest journals in the world dedicated to challenging mathematical
problems for middle and high school students. It has appeared without interruption
since 1895.” The Hungarian journal Középiskolai Matematikai Lapok (Mathematical
Journal for High Schools) has a similar mission and has been published since 1894
except for a few years during WWII. Professor Stan continues: “Even during the two
world wars the Romanian officers who had subscriptions had it [Gazeta] delivered to
them in the military camps. It is probably the main reason why today so many foreign-
born mathematicians in the United States are from Romania. We all grew up with it.
Each month I waited for the newest issue.” Professor Ionascu concurred with these
sentiments, and described getting hooked on the journal in the seventh grade. Hungar-
ian colleagues say similar things about Matematikai Lapok. Professor Stan mentions
that even during the time of the Communist regime in Romania, there was a high level
of mathematics and respect for mathematicians, adding, “We owe a big part of it to
Gazeta Matematică.”
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Summary A convex quadrilateral ABCD is “crosscut” by joining vertices A, B, C, and D to the midpoints of
segments CD, DA, AB, and BC, respectively. Some relations among the areas of the resulting pieces are explored,
both visually and analytically.
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