Trigonometry MATH 122-1A

40

Test #2 (Answers)

Instructions: Answer all problems correctly. Calculators are allowed but *they must not be used to retrieve information or formulas*. Each st*rred problem is extra credit, and each * is worth 5 points. A maximum of 115 points (out of 100) will be awarded on this test.

- 1. (12 points) Consider the graph of the function $y = -1 + 2\sin(3x \pi/4)$. 12
 - (a) What is the exact value of the amplitude of this function? |A| = 2
 - (b) What is the exact value of the period? $P = 2\pi/3$
 - (c) Give the exact (x, y) coordinates for some maximum of the curve. $(x, y) = (\pi/4, 1)$
- 2. (12 points) Consider the function whose graph, a sinusoidal curve, is below. The coordinates 24 of the points shown are $A = (\pi/3, 2)$ and $B = (\pi/2, -1)$.

- (a) What is the exact value of the amplitude of this function? 3
- (b) What is the exact value of the period? $2\pi/3$
- (c) Write an exact formula for the function. $y = 2 3\sin(3(x \pi/3))$ Another correct answer is $y = 2 - 3\cos(3(x - \pi/2))$. Better still: $y = 2 + 3\sin 3x$.
- 3. (16 points) Spew forth some formulas. (Write the standard identities for the following.)
 - (a) $\sin(x-y)$
 - (b) $\cos(a-b)$
 - (c) $\tan(\alpha \beta)$
 - (d) $\sin 2\theta$
 - (e) $\cos 2A$ (write all three identities)
 - (f) $\sin(x/2)$
 - (g) $\cos(\theta/2)$
 - (h) $\tan(A/2)$ (write at least two)

You'll look these up.

- 4. (12 points) Simplify the following
 - (a) $\sin(-x) = -\sin x$ (b) $\tan(\pi + B) = \tan B$ (c) $\sin(90^\circ + y) = \cos y$ (d) $\cos(\pi - x) = -\cos x$
 - (e) $\cos(270^\circ \theta) = -\sin\theta$

(f)
$$\tan(\pi/2 + A) = -\cot A$$

5. (12 points) Assuming $\cos \theta = -\frac{2}{3}$ and $\sin \beta = \frac{1}{\sqrt{2}}$ and that $\theta \in \text{QII}$ and $\beta \in \text{QII}$, give 64 exact algebraic values for the following.

(a)
$$\cos(\theta - \beta) = \frac{2\sqrt{2} + \sqrt{10}}{6}$$

(b) $\tan(\theta - \beta) = \frac{2 - \sqrt{5}}{2 + \sqrt{5}} = 4\sqrt{5} - 9$

- 6. (12 points) Assuming $\cos \alpha = -2/3$ and $180^{\circ} < \alpha < 360^{\circ}$, give exact algebraic values for the following. 76
 - (a) $\cos(2\alpha) = 1/9$ (b) $\cos(\alpha/2) = -1/\sqrt{6}$
- 7. (12 points) Assuming $\sin \alpha = -3/5$ and $180^{\circ} < \alpha < 360^{\circ}$, give exact algebraic values for the following.
 - (a) $\sin(2\alpha) = \pm 24/25$ (both are possible) (b) $\sin(\alpha/2) = \frac{1}{\sqrt{10}}$ or $\frac{3}{\sqrt{10}}$ (both are possible)
- 8. (6 points) Write the number

$$\cos 170^{\circ} \sin 60^{\circ} - \sin 170^{\circ} \cos 60^{\circ}$$

in the form of a single trig function of a single exact angle.

 $\sin(-110^\circ)$

9. (6 points) Find an exact algebraic expression for cos 75°. (Use a sum-formula with some 100 familiar angles or a half-angle formula.)

52

94

- 10. (6 points) Find an exact algebraic expression for $\tan 5\pi/8$. (Use a half-angle formula.) $-1 - \sqrt{2}$
- 11. (6 points) Verify.

$$\frac{\tan A - \cot A}{\sec A + \csc A} = \sin A - \cos A$$

LHS =
$$\frac{\frac{\sin A}{\cos A} - \frac{\cos A}{\sin A}}{\frac{1}{\cos A} + \frac{1}{\sin A}} = \frac{\frac{\sin^2 A - \cos^2 A}{\cos A \sin A}}{\frac{\sin A + \cos A}{\cos A \sin A}} = \frac{(\sin A - \cos A)(\sin A + \cos A)}{\sin A + \cos A}$$

= RHS

12. (6 points) Verify.

 $\frac{2\tan x}{1+\tan^2 x} = \sin 2x$

LHS =
$$\frac{2 \tan x}{1 + \tan^2 x} \cdot \frac{\cos^2 x}{\cos^2 x}$$

= $\frac{2 \sin x \cos x}{\cos^2 x + \sin^2 x} = \frac{\sin 2x}{1} = \text{RHS}$

13. (6 points) Simplify.

$$\frac{1 - \cos 2x}{\sin 2x} = \dots = \tan x$$

3

124

112

106

118

A.) (\star) Find an equation that matches the graph.

B.) (\star) The shaded region has area equal to 1 square unit. What is the radius of the circle?

C.) (*) The line y = 2x is rotated counterclockwise about the origin through an angle of 30°. Find the exact algebraic value of the slope of the line obtained. $m = -8 - 5\sqrt{3}$

D.) (\star) Prove the following classical fact of geometry: On a circle, let A and B denote the endpoints of a diameter. Let C denote any other point on the circle. Then the angle at C in $\triangle ABC$ is a right angle. (You can use some trig to prove this but there is a way to do it by simply summing angles in triangles.)

- E.) (*) Prove the following classical fact of geometry: Let A, B and C denote any points on a circle centered at the point O. Prove that $m(\angle ACB) = \frac{1}{2} m(\angle AOB)$. Do this "triglessly" — use an angle-countling proof.
- F.) (\star) Consider the function whose graph, a sinusoidal curve, is below.

- G.) (\star) Write at least two of the "product-to-sum" identities. Look 'em up.
- H.) $(\star \cdots \star)$ Ask a question you wish I had asked and answer it. Points will vary.