12

Test #2

Instructions: Answer all problems correctly. Calculators are allowed but *they must not be used to retrieve information or formulas*. Each st \star rred problem is extra credit, and each \star is worth 5 points. A maximum of 115 points (out of 100) will be awarded on this test.

- 1. (12 points) Consider the graph of the function $y = -1 + 2\sin(3x \pi/4)$.
 - (a) What is the exact value of the amplitude of this function?
 - (b) What is the exact value of the period?
 - (c) Give the exact (x, y) coordinates for some maximum of the curve.
- 2. (12 points) Consider the function whose graph, a sinusoidal curve, is below. The coordinates 24 of the points shown are $A = (\pi/3, 2)$ and $B = (\pi/2, -1)$.

- (a) What is the exact value of the amplitude of this function?
- (b) What is the exact value of the period?
- (c) Write an exact formula for the function.

- (a) $\sin(x-y)$
- (b) $\cos(a-b)$
- (c) $\tan(\alpha \beta)$
- (d) $\sin 2\theta$
- (e) $\cos 2A$ (write all three identities)
- (f) $\sin(x/2)$
- (g) $\cos(\theta/2)$
- (h) $\tan(A/2)$ (write at least two)

1	
1	
1	
1	
1	
1	
1	
1	
1	

- 4. (12 points) Simplify the following
 - (a) $\sin(-x)$
 - (b) $\tan(\pi + B)$
 - (c) $\sin(90^\circ + y)$
 - (d) $\cos(\pi x)$
 - (e) $\cos(270^\circ \theta)$
 - (f) $\tan(\pi/2 + A)$
- 5. (12 points) Assuming $\cos \theta = -\frac{2}{3}$ and $\sin \beta = \frac{1}{\sqrt{2}}$ and that $\theta \in \text{QII}$ and $\beta \in \text{QII}$, give 64 exact algebraic values for the following.
 - (a) $\cos(\theta \beta)$

(b) $\tan(\theta - \beta)$

- 6. (12 points) Assuming $\cos \alpha = -2/3$ and $180^{\circ} < \alpha < 360^{\circ}$, give exact algebraic values for the following. 76
 - (a) $\cos(2\alpha)$

(b) $\cos(\alpha/2)$

- 7. (12 points) Assuming $\sin \alpha = -3/5$ and $180^{\circ} < \alpha < 270^{\circ}$, give exact algebraic values for the following.
 - (a) $\sin(2\alpha)$

(b) $\sin(\alpha/2)$

8. (6 points) Write the number

$\cos 170^{\circ} \sin 60^{\circ} - \sin 170^{\circ} \cos 60^{\circ}$

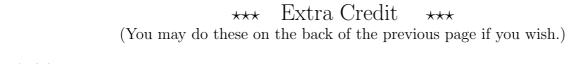
in the form of a single trig function of a single exact angle.

9. (6 points) Find an exact algebraic expression for cos 75°. (Use a sum-formula with some **100** familiar angles or a half-angle formula.)

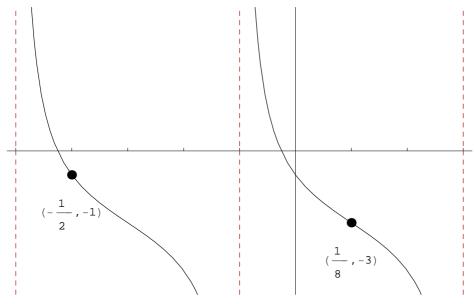
10. (6 points)	Find an exact	algebraic ex	pression for	$\tan 5\pi/8.$	(Use a half-angle	formula.)	106

11. (6 points) Verify.

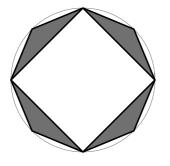
$$\frac{\tan A - \cot A}{\sec A + \csc A} = \sin A - \cos A$$


12. (6 points) Verify.

$$\frac{2\tan x}{1+\tan^2 x} = \sin 2x$$

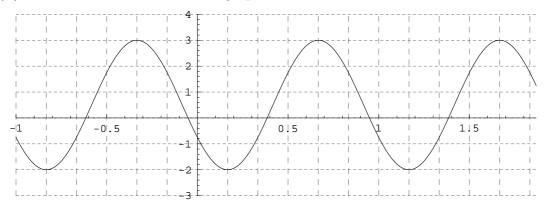

13. (6 points) Simplify.

 $\frac{1-\cos 2x}{\sin 2x}$


124

A.) (\star) Find an equation that matches the graph.

B.) (\star) The shaded region has area equal to 1 square unit. What is the radius of the circle?



C.) (\star) The line y = 2x is rotated counterclockwise about the origin through an angle of 30°. Find the exact algebraic value of the slope of the line obtained.

D.) (\star) Prove the following classical fact of geometry: On a circle, let A and B denote the endpoints of a diameter. Let C denote any other point on the circle. Then the angle at C in $\triangle ABC$ is a right angle. (You can use some trig to prove this but there is a way to do it by simply summing angles in triangles.)

E.) (*) Prove the following classical fact of geometry: Let A, B and C denote any points on a circle centered at the point O. Prove that $m(\angle ACB) = \frac{1}{2} m(\angle AOB)$.

F.) (\star) Consider the function whose graph, a sinusoidal curve, is below.

- (a) What is the exact value of the amplitude of this function?
- (b) What is the exact value of the period?
- (c) Write an exact formula for the function.

G.) (\star) Write at least two of the "product-to-sum" identities.

H.) $(\star \cdots \star)$ Ask a question you wish I had asked and answer it. Points will vary.