Calc II MATH 222

T1

Instructions: Write answers to problems on separate paper. You may NOT use calculators or any electronic devices or notes of any kind. Each st \star rred problem is extra credit and each \star is worth 5 points. (These are just more problems, but harder. They're worth fewer points so that you're not unduly tempted.) Loads of points are possible on the test, but the highest grade that I will award is 115 points.

Unless otherwise specified, you may leave **definite** integrals unevaluated ("just set it up"), but they must be "ready to evaluate," that is, each must be a definite integral involving one variable only (e.g., no mixed x's and y's) with **explicit functions and explicit limits of integration and no absolute values whatsoever**. However, if you would like to evaluate the integrals, they are worth an extra 4 points each. (*Warning:* Save these for last; some may be too difficult.)

Diminishing returns: Phrases such as "8/6/4 points" (see problem #3, for instance) refer to the points awarded for doing several parts of a problem. The example here indicates that 8 points will be awarded if any one problem of the three is done correctly, 8 + 6 points if any two are correct, 8 + 6 + 4 points for all three.

- 1. Find the exact areas of the regions described below. (Do not merely write integrals in this one; evaluate completely to find the exact numerical result.)
 - (a) (5 points) the region bounded by the curves $y = x^2 x$ and y = x + 1
 - (b) (10 points) the region bounded by the curves $y = x^3 x^2$ and $y = x^2 + x$
- 2. (10 points) Find the area bounded by y = |x 1| and $y = x^2 2$. (Set it up. Warning: you'll need the quadratic formula to find the limits. But you won't be evaluating the integral(s) so that part is no big deal.)
- 3. (10/6/3 points) Use the method of disks/washers to find the volumes of the solids obtained by rotating the region bounded by the curves $y = x^2$ and y = 2x about each of the following lines. (Set up the integrals.)
 - (a) the x-axis
 - (b) the *y*-axis
 - (c) the line y = -1

- 4. (10/4 points) Use the method of shells to find the volume of the solid obtained by rotating the region bounded by $y = x^2 2x + 3$ and y = x + 3 about each of the following lines. (Set up the integrals.)
 - (a) the *y*-axis
 - (b) the line x = -2
- 5. (10 points) A solid's base is a semicircle S of radius R. (If R scares you, let R = 2, but it will cost you three points.) Cross sections perpendicular to this base and perpendicular to the base of S are also semicircles with their own bases in S. Find the volume of the solid. (Evaluate the integral in this one.)
- 6. (7 points) Find the average value of the function $y = \sin x$ on the interval $[0, \pi]$. (Evaluate completely to get an exact numerical answer.)
- 7. (7 points) State precisely the Mean Value Theorem for Integrals. (Completeness counts.)
- 8. (8/6/4 points) Evaluate each of the following integrals (I'd use integration by parts).

(a)
$$\int x^2 e^{3x} dx$$

- (b) $\int \arctan(3x) dx$
- (c) $\int \sqrt[3]{x} \ln x \, dx$
- 9. (8/6/4 points) Evaluate the following intervals. (These might be quickies if you remember certain formulas. Otherwise you need a trick or two.)
 - (a) $\int \ln(5x) dx$
 - (b) $\int \sec(5x) dx$
 - (c) $\int \sec^3(5x) dx$
- 10. (8/6/4 points) Evaluate each of the following intervals. (I'd use some trig identities.)
 - (a) $\int (1 + \cos 5x)^2 dx$
 - (b) $\int \tan^3 x \, dx$
 - (c) $\int \sin^3 x \, \cos^3 x \, dx$

 $\star \star \star \text{Extras} \star \star \star$

Feel free to do these on the back of the previous page or elsewhere. Just tell me where to look.

- A. (*) Find the exact area bounded by the x-axis, the y-axis, the line x = 2 and the curve $y = 1 + \sqrt{4 x^2}$.
- B. $(\star\star)$ Same as in problem A, but with x = 1 instead of x = 2.
- C. (\star) Consider the region whose area you found in problem #1. Now consider the solid formed by the union of all line segments drawn from points in this region to the point 5 units above the above the *xy*-plane, directly above the origin. Find the volume of this solid.
- D. (\star) Use the method of shells to find the volume of the solid obtained by rotating the region given in problem #4 about the x-axis.
- E. (*) Prove the Mean Value Theorem for Integerals by applying the usual Mean Value Theorem (for derivatives) to the function $\int_a^x f(t) dt$.
- F. (*) Evaluate the integral $\int \cos mx \, \cos nx \, dx$, where m and n are constants.
- G. (*) Find a reduction formula for the integral $\int \sec^{2n-1} x \, dx$, where n is a positive integer. The trick we used for $\int \sec^3 x \, dx$ works.
- H. $(\star\star)$ Here's a nice identity: $\sin^3 x = \frac{1}{4}(3\sin x \sin 3x)$.
 - (a) Prove that the identity is true.
 - (b) Use the techniques of integration we've been studying to evaluate $\int \sin^3 x \, dx$.
 - (c) Use the identity to find this same integral.
 - (d) use the equality of the integrals you found to write a similar identity for $\cos^3 x$.
- I. $(\star \cdots \star)$ Ask a question you wish I had asked and answer it. Points may vary. Offer void where prohibited by law.