Calc II MATH 222

Τ1

Instructions: Write answers to problems on separate paper. You may NOT use calculators or any electronic devices or notes of any kind. Each st \star rred problem is extra credit and each \star is worth 5 points. (These are just more problems, but harder. They're worth fewer points so that you're not unduly tempted.) Loads of points are possible on the test, but the highest grade that I will award is 110 points.

Unless otherwise specified, you may leave **definite** integrals unevaluated ("just set it up"), but they must be "ready to evaluate," that is, each must be a definite integral involving one variable only (e.g., no mixed x's and y's) with **explicit functions and explicit limits of integration and no absolute values whatsoever**. However, if you would like to evaluate the integrals, they are worth an extra 4 points each. (*Warning:* Save these for last; some may be too difficult.)

Diminishing returns: Phrases such as "8/6/4 points" (see problem #4, for instance) refer to the points awarded for doing several parts of a problem. The example here indicates that 8 points will be awarded if any one problem of the three is done correctly, 8 + 6 points if any two are correct, 8 + 6 + 4 points for all three.

- 1. (10/6 points) Find the exact areas of the regions described below. (Do not merely write integrals in this one; evaluate completely to find the exact numerical result.)
 - (a) the region bounded by the curves $x = 2y^2$ and x + y = 1.
 - (b) the region bounded by the curves $y = \sin(\pi x/2)$ and y = 2 x
- 2. (12 points an "A" problem) Find the area bounded by y = 2 |x| and y = x(x 2). (Set it up.)
- 3. (12 points) Consider the region bounded by the x-axis, the lines x = 1 and x = 2, and the curve $y = 1/x^2$. A vertical line x = b splits this region into two equal areas. Find the value of b.
- 4. (8/6/3/3 points) Use the method of disks/washers to find the volumes of the solids obtained by rotating the region bounded by the curves x = 2y and $y = \sqrt{x}$ about each of the following lines. (Set up the integrals.)
 - (a) the x-axis
 - (b) the *y*-axis
 - (c) the line y = 2
 - (d) the line x = -1

- 5. (8/6/3/3 points) Use the method of shells to find the volumes of the solids obtained by rotating the region bounded by the curves $y = x^2$ and y = 2 x about each of the following lines. (Set up the integrals.)
 - (a) the x-axis
 - (b) the *y*-axis
 - (c) the line x = 2
 - (d) the line y = 0
- 6. (12 points) A solid's base is the region in the xy-plane bounded by the semicircle $y = \sqrt{R^2 x^2}$ and the line y = 0. Cross sections perpendicular to the x-axis (and perpendicular to the base of the solid, of course) are squares. Find the volume of the solid. (Evaluate the integral in this one.)
- (\star) Repeat the previous problem, but with the cross-sections perpendicular to the *y*-axis instead.
- 7. (15 points an "A+" problem) This is a modified example from the text. Consider a right circular cylinder of radius R and height H. A "wedge" of the cylinder is formed as follows. Set the cylinder on one of its circular bases, so that this base is centered at the origin of xy-plane and the rest of the cylinder lies above the plane. The points A = (0, -R), B = (0, R) and C = (R, 0) lie on the circular base; consider the point D lying above the xy-plane, H units above the point C. (The point D is on the "top" of the cylinder.) The plane formed by A, B and D cuts the cylinder. Find the volume of the wedge of the cylinder lying below this cutting plane and above the xy-plane (and within the cylinder).

- 8. (8 points) Find the average value of the function y = 1/(3x + 4) over the interval [-1, 1]. (Evaluate completely to get an exact numerical answer.)
- 9. (5 points) State precisely the Mean Value Theorem for Integrals.
- 10. (8/6/4 points) Evaluate each of the following integrals.

(a)
$$\int (x+2)e^{5x} dx$$

(b) $\int \arcsin(3x) dx$
(c) $\int \frac{\ln x}{\sqrt[3]{x}} dx$

11. (8/6/4 points) Evaluate each of the following integrals.

(a)
$$\int x^2 \cos(5x) dx$$

(b) $\int x \arctan x dx$
(c) $\int e^{5x} \cos 2x dx$

12. (6 points) Integrate.
$$\int \frac{1}{\cos x} dx$$

 $\star \star \star \text{Extras} \star \star \star$

Feel free to do these on the back of the previous page or elsewhere. Just tell me where to look.

- A. (\star) Consider the region in the *xy*-plane bounded by the curve $y = x^2$ and the line y = 4. Now consider the solid formed by the union of all line segments drawn from points in this region to the point 5 units above the *xy*-plane and directly over the origin. Find the volume of this solid.
- B. (\star) Prove the Mean Value Theorem for Integrals by applying the usual Mean Value Theorem (for derivatives) to the function $\int_{a}^{x} f(t) dt$. Explain each step.
- C. (\star) Find the mean value c guaranteed by the Mean Value Theorem for Integrals in problem #8.
- D. $(\star\star)$ A spherical tank 10 meters in diameter and filled with liquid. Find the work done by pumping all the fluid out of the tank and up to a height 5 meters above the top of the tank. Use ρ for the density of the liquid and g for the acceleration due to gravity.
- E. (*) Evaluate the integral $\int \cos mx \, \cos nx \, dx$, where m and n are nonzero constants.
- F. (*) Find a reduction formula for the integral $\int \sin^n x \, dx$, where n is a positive integer.
- G. $(\star \cdots \star)$ Surely I forgot something you were ready for. Ask a question you wish I had asked and answer it. Points may vary. Offer void where prohibited by law.