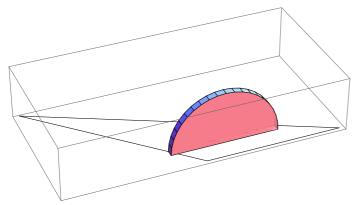
T1

Instructions: Write answers to problems on separate paper. You may NOT use calculators or any electronic devices or notes of any kind. Each st \star rred problem is extra credit and each \star is worth 5 points. (These are just more problems, but harder. They're worth fewer points so that you're not unduly tempted.) Loads of points are possible on the test, but the highest grade that I will award is 115 points.

Unless otherwise specified, leave **definite** integrals unevaluated ("just set it up") but "ready to evaluate." That is, a "set-up" integral must be a definite integral involving one variable only (e.g., no mixed x's and y's) with **explicit functions and explicit limits of integration and no absolute values whatsoever**.

Diminishing returns: Phrases such as "7/5/3 points" (see problem #6, for instance) refer to the points awarded for doing several parts of a problem. The example here indicates that 7 points will be awarded if any one problem of the three is done correctly, 7 + 5 points if any two are correct, 7 + 5 + 3 points for all three.

- 1. (12 points) Find the exact area of the region bounded by the curves $y = x^2$ and y = 3 2x. Evaluate completely and simplify.
- 2. (10 points) Find the area bounded by y = 2|x| and $y = -x^2 + 4x + 2$. (Just set up the integral(s). You might need the quadratic formula to find the limits.)
- 3. (10 points) A solid S has as its base the region R in the xy-plane bounded by the lines y = 2x, y = x and x = 2. Cross sections of S perpendicular to the x-axis (and perpendicular to the base of S, of course) are semicircles with bases in R. Use integration to the volume of the solid. (Evaluate and simplify.)



- 4. (10 points) Use the method of disks/washers to find the volume of the solid obtained by rotating the region bounded by the curves $y = x^2$ and $y = x^3$ about the x-axis. (Evaluate and simplify.)
- 5. (10 points) Use the method of shells to find the volume of the solid obtained by rotating the region bounded by the curves $y = 1 x^2$ and $y = (x 1)^2$ about the y-axis. (Set up the integral(s).)
- 6. (7/5/3 points) Find the volumes of the solids obtained by rotating the region described in problem #4 about the following lines. (Set up the integral(s).)
 - (a) the y-axis
 - (b) the line y = 2
 - (c) the line x = -3
- 7. (7/5/3 points) Find the volumes of the solids obtained by rotating the region described in problem #5 about the following lines. (Set up the integral(s).)
 - (a) the x-axis
 - (b) the line y=2
 - (c) the line x = -3
- 8. (5 points) You probably realized that using disks/washers for problem #5 would be more difficult than using shells. Convince yourself that this is true by actually using disks/washers to find the volume! (Set up the integral(s).)
- 9. (10 points) Find the average value of the function $y = \frac{1}{x-1}$ over the interval [2, 6]. (Evaluate completely and simplify.)
- 10. (5 points) State precisely the Mean Value Theorem for Integrals. (Completeness counts.)
- 11. (10/7/4 points) Evaluate each of the following integrals (I'd use integration by parts).
 - (a) $\int x^2 \cos(5x) \ dx$
 - (b) $\int \arcsin(2x) dx$
 - (c) $\int \frac{\ln x}{\sqrt{x}} dx$
- 12. (10/7/4 points) Evaluate each of the following integrals. (I'd use some trig identities.)
 - (a) $\int (1 \cos 3x)^2 dx$
 - (b) $\int \sin^2 x \cos^5 x \, dx$
 - (c) $\int \sec^4(5x) \tan^3(5x) dx$

$$\star$$
 \star \star Extras \star \star

Feel free to do these on the back of the previous page or elsewhere. Just tell me where to look.

- A. (\star) In problem #3, find the volume of the resulting solid if the semi-circular cross-sections are perpendicular the y-axis instead of the x-axis (with the same \mathcal{R} region for the base).
- B. (\star) Consider the region \mathcal{A} whose area you found in problem #1. Let P denote the point 5 units above the xy-plane, directly above (0,0). (This is the point (0,0,5) in xyz-coordinates, something we introduce in Calc III.) Now consider the solid formed by the union of all line segments drawn from points in \mathcal{A} to the point P. Find the volume of this solid.
- C. (\star) A spherical tank of radius R is filled with liquid. Find the work done by pumping all the liquid out of the tank up to a height H meters above the top of the tank. Use ρ for the density of the liquid and g for the acceleration due to gravity.
- D. (\star) Evaluate $\int x \arctan x \, dx$.
- E. (\star) This follows a discussion in class yesterday.
 - (a) Evaluate $\int \frac{1}{1-\sin x} dx$ using the "conjugation" trick.
 - (b) Evaluate $\int \frac{1}{1-\cos x} dx$ using a different method—let x=2u and exploit a ubiquitous double-angle identity.
- F. (\star) Prove the Mean Value Theorem for Integerals by applying the usual Mean Value Theorem (for derivatives) to the function $\int_a^x f(t) dt$.
- G. (\star) Evaluate the integral $\int \sin mx \sin nx \, dx$, where m and n are constants with $m \neq n$.
- H. (\star) Find a reduction formula for the integral $\int \sin^n x \, dx$, where n is a positive integer.
- I. $(\star\star)$ Here's a nice identity: $\sin^3 x = \frac{1}{4}(3\sin x \sin 3x)$.
 - (a) Prove that the identity is true using familiar trig identities.
 - (b) Use the techniques of integration we've been studying to evaluate $\int \sin^3 x \ dx$.
 - (c) Use the identity to find this same integral.
 - (d) Use the equality of your results to find an identity for $\cos^3 x$. (Beware of constants! But consider what must happen when x = 0, say.)
- J. $(\star \cdots \star)$ Surely I forgot something you were ready for. Ask a question you wish I had asked and answer it. Points will vary. (Trivial questions or repeats get few, if any, points.)