Calc II MATH 222

T2

Instructions: Write answers to problems on separate paper. You may NOT use calculators or any electronic devices or notes of any kind. Each st \star rred problem is extra credit and each \star is worth 5 points. (These are just more problems, but harder. They're worth fewer points so that you're not unduly tempted.) Loads of points are possible on the test, but the highest grade that I will award is 115 points.

Diminishing returns: Phrases such as "8/6/4 points" refer to the points awarded for doing several parts of a problem. The example here indicates that 8 points will be awarded if **any** one problem of three is done correctly, 8 + 6 points if any two are correct, 8 + 6 + 4 points for all three.

1. (10/10/8/8 points) Evaluate each of the following integrals.

(a)
$$\int \sin^5 x \, \cos^3 x \, dx$$

(b)
$$\int (2 - \sin 5x)^2 dx$$

(c)
$$\int \sec^3 x \, \tan^3 x \, dx$$

- (d) $\int \sec^4 x \tan^3 x \, dx$
- 2. (10/10/8 points each) Evaluate the integrals.

(a)
$$\int \frac{dx}{\sqrt{9-x^2}}$$

(b)
$$\int_0^4 \frac{dx}{\sqrt{9+x^2}}$$

(c)
$$\int \frac{dx}{9+4x^2}$$

3. (3/3/2/2 points) "Partially" set up partial fraction decompositions for each of the following by writing the function as a sum of simple fractions with *undetermined coefficients*. As an example of what I mean, if asked to set up the decomposition of the function $\frac{2x-3}{(x-3)(x+1)}$, you would answer

$$=\frac{A}{x-3}+\frac{B}{x+1}.$$

(Here, A and B are the coefficients to be determined, but you are not determining them in the next four problems.) Do likewise for each of the following.

(a)
$$\frac{2x+3}{x^2(x-4)}$$

(b) $\frac{2x+3}{x(x^2+4)}$
(c) $\frac{2x+3}{(x+1)(x^2+4)^2}$
(d) $\frac{2x^2+3}{(x-3)(x+2)}$ (trickier, but can be answered in like fashion)

4. (10/8/8 points) Evaluate the integrals.

(a)
$$\int \frac{2x-3}{(x-3)(x+1)} dx$$

(b) $\int \frac{5x^2-4x+4}{(x-2)x^2} dx$
(c) $\int \frac{x(x+3)}{(x-2)(x^2+1)} dx$

5. (10/8/8/6 points) Evaluate the integrals.

(a)
$$\int \frac{2x^3 - x^2 - 6x + 1}{(x - 1)(x + 1)} dx$$

(b)
$$\int \cot x \ln(\sin x) dx$$

(c)
$$\int_2^5 \frac{x(x - 2)}{\sqrt{x - 1}} dx$$

(d)
$$\int \frac{1}{x + \sqrt[5]{x}} dx \qquad [\text{One extra } \star \text{ for using } \sqrt[n]{x} \text{ in place of } \sqrt[5]{x} \text{ (if done correctly } \overset{\circ \Delta \circ}{\smile}).]$$

- \star \star \star Extras \star \star
- A. (*) Integrate. $\int \frac{dx}{\sqrt{x} + \sqrt{x+1}}$
- B. (*) Integrate. $\int \frac{dx}{x + \sqrt{x^2 + 2x}}$

C. (*) Integrate by using a hyperbolic trig substitution. $\int \frac{dx}{\sqrt{x^2+1}}$

- D. (\star) Sketch beautiful graphs of $y = \sinh x$ and $y = \cosh x$ on the same set of axes.
- E. (*) Integrate. $\int \sin(7x)\cos(5x) dx$ (Hint: consider product-to-sum formulas.)
- F. (*) Use the "method of undetermined coefficients" (rather than integration by parts FOUR TIMES) to evaluate $\int x^4 e^x dx$.
- G. $(\star \cdots \star)$ Ask a question you wish I had asked and answer it. Points may vary. Offer void where prohibited by law.