
Calc III Fall 2002

MATH 223 Name:

Final Exam

A.) The problems in this section are worth 6 points each. A maximum of 60 points will
be awarded in this section.

1. Consider the triangle having vertices P = (2, 1, 1), Q = (−1, 4, 2) and R = (0,−2, 1).

a.) Find the area of 4PQR
Use the cross-product:

|4PQR| =
1

2
||PQ×PR||

=
1

2
||〈−3, 3, 1〉 × 〈−2,−3, 0〉||

=
1

2
||〈3,−2, 15〉|| = 1

2

√
238

b.) Let Q′ denote the point that lies 2/3 the way from P to Q; let R′ be the point lying 3/4
the way from P to R. Find the coördinates of Q′ and R′.

Q′ = P + (2/3)PQ = (2, 1, 1) + (2/3)〈−3, 3, 1〉
= (2, 1, 1) + 〈−2, 2, 2/3〉 = (0, 3, 5/3),

R′ = P + (3/4)PR = (2, 1, 1) + (3/4)〈−2,−3, 0〉
= (2, 1, 1) + 〈−3/2,−9/4, 0〉 = (1/2,−5/4, 1).

c.) Find the area of 4PQ′R′

One way is to just haul off and do what you did in part (a):

|4PQ′R′| =
1

2
||PQ′ ×PR′||

=
1

2
||〈−2, 2, 2/3〉 × 〈−3/2,−9/4, 0〉||

=
1

2
||〈−135/8, 45/4, 39/8〉|| = 1

2

√
119/2 =

1

4

√
238.

Or you could simply note that

|4PQ′R′| =

(
2

3

) (
3

4

)
|4PQR|

=
1

2
|4PQR| = 1

4

√
238.
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2. At what point does the line

L = {(2t− 1, t + 3, 1− t) | t ∈ R}
meet the plane containing 4PQR of problem #A1?

First get an equation for the plane. We already have a normal vector from problem #A1:

PQ×PR = 〈3,−2, 15〉.
So an equation for the plane is

〈3,−2, 15〉 · 〈x, y, z〉 = 〈3,−2, 15〉 · P,

or
3x− 2y + 15z = 19.

Now just plug in a point on L and solve for t:

3(2t− 1)− 2(t + 3) + 15(1− t) = 19

⇒ t = −13/11.

The point is therefore

(2(−13/11)− 1,−13/11 + 3, 1− (−13/11)) = (−37/11, 20/11, 24/11).

3. Find the distance from the line L of problem #A2 to the point P of problem #A1.

The distance from a line T + tv to a point P is
||PT× v||
||v|| . We can express L with

T = (−1, 3, 1), v = 〈2, 1,−1〉,
so our distance is

||〈−3, 2, 0〉 × 〈2, 1,−1〉||
||〈2, 1,−1〉|| =

||〈−2,−3,−7〉||
||〈2, 1,−1〉|| =

√
62√
6

4. Referring again to 4PQR of problem #A1, a perpendicular is dropped from point Q to a
point S on the line containing segment PR. Find the coordinates of S.

Since S is the projection of Q onto PR, we have

S = P +
PQ ·PR

||PR||2 PR

= (2, 1, 1) +
〈−3, 3, 1〉 · 〈−2,−3, 0〉

||〈−2,−3, 0〉||2 〈−2,−3, 0〉

= (2, 1, 1) +
−3

13
〈−2,−3, 0〉

= 〈32/13, 22/13, 1〉.
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5. Find a unit vector that bisects the angle at vertex Q of the triangle PQR in problem #A1.

A familiar tale. A vector bisecting the angle is found via symmetry:

||QP||QR + ||QR||QP =
√

19〈1 + 3
√

2,−6− 3
√

2,−1−
√

2〉.

Now we just need to scale this to be a unit vector. Ugly, perhaps, but just write it:

〈1 + 3
√

2,−6− 3
√

2,−1−√2〉√(−1−√2
)2

+ 9
(
2 +

√
2
)2

+
(
1 + 3

√
2
)2

.

It simplifies to
〈1 + 3

√
2,−6− 3

√
2,−1−√2〉√

76 + 44
√

2
.

6. What kind of surface (e.g., elliptic paraboloid, hyperboloid of two sheets, etc.) is each of the
following in R3?

a.) (x− 1)2 − (y + 2)2 = 3− z
This is a hyperbolic paraboloid (saddle). Cross-sections perpendicular to the z-axis are
hyperbolas (opening differently depending on the sign of 3− z), cross-sections perpendic-
ular to the x- and y-axes are parabolas.

b.) (x− 1)2 − (y + 2)2 = z2

A right circular cone. Add the negative term to the other side to see it. It has a vertex
at (1,−2, 0) and its axis is parallel to the x-axis.

c.) 2x2 + 3y = 5
This is a parabolic cyliner. The z coördinate is free; for each z we get a parabola.

7. Let R(t) = 〈2t2, 2t− t2, 1− t〉 denote a space curve in R3 (it’s a parabola). Find its minimum
radius of curvature.

The curvature is ||R′(t)×R′′(t)||
||R′(t)||3 ,

so the radius of curvature is the reciprocal of that, which is

r(t) =
(20t2 − 8t + 5)3/2

√
84

.

This is minimum when 20t2 − 8t + 5 is minimum, which is when t = 1/5 (just take the
derivative and set it equal to zero, or note that the vertex of a parabola, which is at the
minimum here, is where t = −b/2a). The actual minimum of the quadratic is

20(1/5)2 − 8(1/5) + 5 = 21/5,

so the minimum radius is
(21/5)3/2/

√
84.
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8. Suppose that the acceleration of a particle is described by

A(t) = 〈t− 2, 4, 6 sin πt〉,
for each t ∈ R. The particle is observed to have a velocity vector

V0 = 〈0, 2, 0〉
when it is at the point (−2, 4, 0). Find a formula for the position vector as a function of t.

Integrate once to get the velocity vector.

V(t) =

∫
A(t) dt =

∫
〈t− 2, 4, 6 sin πt〉 dt = 〈t2/2− 2t, 4t,−(6/π) cos πt〉+ C1.

When the particle is at (−2, 4, 0), we see that t = 0 (you’re welcome); we know that the
velocity is 〈0, 2, 0〉 there, so we can find C1:

〈0, 0,−6/π〉+ C1 = 〈0, 2, 0〉,
which implies that C1 = 〈0, 2, 6/π〉. Integrating again, we have the position vector:

R(t) =

∫
V(t) dt =

∫
(〈t2/2− 2t, 4t,−(6/π) cos πt〉+ C1)dt

= 〈t3/6− t2, 2t2,−6/π2 sin πt〉+ C1t + C2.

At t = 0 this gives
C2 = 〈−2, 4, 0〉.

9. What is the curvature of the path of the particle in problem #A8, when t = 0?

Even without doing problem #A8, the curvature is given by

||R′(0)×R′′(0)||
||R′(0)||3 =

||〈0, 2, 0〉 × 〈−2, 4, 0〉||
||〈0, 2, 0〉||3 = 4/23/2 =

√
2.

10. For each of the following, determine whether or not f(x, y) has a limit at (0, 0). Justify your
answers — no one-word answers.

a.) f(x, y) =
x2

x2 + 2y2

No limit. Along the y-axis (x = 0) the limit is 0, but along the x-axis it’s 1.

b.) f(x, y) =
x3

x2 + 2y2

The limit is zero: ∣∣∣∣
x3

x2 + 2y2

∣∣∣∣ =
|x|x2

x2 + y2
≤ |x|,

which goes to zero.

c.) f(x, y) =
x4y2

x8 + y4

No limit. Along the y-axis it is clearly zero, and if you check all straight lines y = mx it
goes to zero along these, too. But if you approach the origin along the curve y = x2 you
get 1/2.
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11. Prove that the following function is continuous at (0, 0).

f(x, y) =





x4 − 2y4

x2 + 2y2
if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)

Since f(0, 0) = 0, we just need to show that the limit is zero as we approach (0, 0). But for
(x, y) 6= (0, 0) we have

|f(x, y)| =

∣∣∣∣
x4 − 2y4

x2 + 2y2

∣∣∣∣

≤ x4 + 2y4

x2 + 2y2
(triangle inequality)

=
x2x2 + 2y2y2

x2 + 2y2

≤ x2(x2 + 2y2) + (x2 + 2y2)y2

x2 + 2y2

= x2 + y2,

which goes to zero.

12. Find fxy for the function

f(x, y) = x3 + e3x2y + y3.

We have
fx(x, y) = 3 x2 + 6 e3 x2 y x y,

hence

fxy(x, y) =
∂

∂y
fx(x, y) = 6 e3 x2 y x + 18 e3 x2 y x3 y = 6 e3 x2 y x

(
1 + 3 x2 y

)
.

B.) The problems in this section are worth 10 points each. A maximum of 60 points
will be awarded in this section.

1. Give a unit vector in the direction of greatest increase of the function f(x, y) given in prob-
lem #A12.

For each (x, y), the direction of greatest increase is given by the gradient at each point,

∇f(x, y) = fx(x, y)i + fy(x, y)j

= (3 x2 + 6 e3 x2 y x y)i + (3 e3 x2 y x2 + 3 y2)j.

Okay, a unit vector, which looks hideous, is just

(3 x2 + 6 e3 x2 y x y)i + (3 e3 x2 y x2 + 3 y2)j√
(3 x2 + 6 e3 x2 y x y)2 + (3 e3 x2 y x2 + 3 y2)2

.
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2. Find the directional derivative of the function f(x, y) given in problem #A12, in the direction
of 〈3,−4〉, at the point (1, 1).

The directional derivative at (a, b) in the direction of a unit vector û is just

Dûf(a, b) = ∇f(a, b) · û.

Ours is

∇f(1, 1) · 〈3/5,−4/5〉 = 〈3 + 6e3, 3 + 3e3〉 · 〈3/5,−4/5〉 = 3(−1 + 2e3)/5.

3. Find an equation for the plane tangent to the first surface given in problem #A6, at the point
(3, 0, 3).

The equation is (x− 1)2 − (y + 2)2 = 3− z and we duly note that (3, 0, 3) truly does lie on
this surface. In this instance it is easiest to simply let

f(x, y) = z = 3− (x− 1)2 + (y + 2)2,

then use the formula for the tangent plane at (a, b),

z − f(a, b) = fx(a, b)(x− a) + fy(a, b)(y − b).

Since
fx(x, y) = −2(x− 1) and fy(x, y) = 2(y + 2),

so that
fx(3, 0) = −4 and fy(3, 0) = 4,

we have
z − 3 = −4(x− 3) + 4(y − 0),

or
z = −4x + 4y + 15.
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4. Find all critical points of the function

f(x, y) = x3 + y3 + 3x2 − 18y2 + 81y + 5

and classify each as either a relative maximum, a relative minimum or a saddle point.

We have

fx(x, y) = 3x2 + 6x = 3x(x + 2),

fy(x, y) = 3y2 − 36y + 81 = 3(y − 3)(y − 9),

Which gives us the four critical points,

(0, 3), (0, 9), (−2, 3), (−2, 9).

To characterize these we use the second derivative test. We have

fxx(x, y) = 6x + 6,

fxy(x, y) = 0,

fyy(x, y) = 6y − 36,

so
D(x, y) = fxx(x, y)fyy(x, y)− fxy(x, y)2 = 36(x + 1)(y − 6).

Hence,

D(0, 3) = 36(1)(−3) < 0 ⇒ (0, 3) is a saddle point,
D(0, 9) = 36(1)(3) > 0 and fxx(0, 9) = 6 > 0 ⇒ (0, 9) is a relative minimum,
D(−2, 3) = 36(−1)(−3) > 0 and fxx(−2, 3) = −6 < 0 ⇒ (−2, 3) is a relative max,
D(−2, 9) = 36(−1)(3) < 0 ⇒ (−2, 9) is a saddle point.
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5. Find the absolute maximum and minimum of the function f(x, y) given in problem #B4 on
the closed triangle with vertices (−3, 4), (−3,−1) and (2, 4). (Hint: it isn’t as bad as it looks.
Draw a picture of the region so you can see which of the critical points of f lie within the
region. The derivatives on the boundaries are pretty nice; all critical points of the constrained
functions have integer coördinates. On one of the sides of the triangle there is no critical point,
but of course you must show that.)

The only critical points of f which lie within the triangle are (0, 3) and (−2, 3). Let S1

denote the segment joining (−3, 4) with (−3,−1) (the “left” side of the triangle; let S2 be the
“top”, joining (−3, 4) with (2, 4), and let S3 be the remaining “diagonal”, joining (−3,−1)
with (2, 4). Define the three functions, which are the restrictions of f to each corresponding
segment:

g1(y) = f(−3, y) = y3 − 18y2 + 81y + 5, − 1 ≤ y ≤ 4
g2(x) = f(x, 4) = x3 − 18x2 + 81x + 117, − 3 ≤ x ≤ 2
g3(x) = f(x, x + 2) = 2x3 − 9x2 + 21x + 103, − 3 ≤ x ≤ 2.

We next find any test points that are critical points of these functions. Since

g′1(y) = 3(y2 − 12y + 27) = 3(y − 9)(y − 3),

the only critical point of g1 in the interval −1 ≤ y ≤ 4 is y = 3. Likewise, g2 has only one
critical point of interest, namely at x = 3. Finally,

g′3(x) = 3(2x2 − 6x + 7),

which has no zeros at all, so we obtain no new critical points there. Therefore, we need only
test the two original critical points of f , the critical points from g1 and g2 and the vertices of
the triangle. We obtain

f(0, 3) = 113
f(−2, 3) = 117
g1(3) = f(−3, 3) = 113
g2(3) = f(3, 4) = 159
f(−3, 4) = 105
f(−3,−1) = 69
f(2, 4) = 125.

Therefore, the minimum is at the vertex (−3,−1) and the max is at (3, 4), the minimimu and
maximum values being 69 and 159, respectively

6. Reverse the order of integration in the following:

∫ 3

0

∫ 4−x

1

(x + y) dy dx

(Don’t evaluate the integral unless you just want to check your answer.)

The region is the triangle with vertices (0, 1), (0, 4), (3, 1). For each y ∈ [1, 4], x lies in [0, 4−y].
So our integral is ∫ 4

1

∫ 4−y

0

(x + y) dx dy .
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7. Evaluate both of the iterated integrals

∫∫

R

y dx dy and

∫∫

R

y dy dx

where R is the trianglular region with vertices (−1, 1), (1, 1) and (0, 2).

We note that the oblique “left” and “right” sides of the triangle lie along the lines y = x+2 and
y = 2−x, resp. For the first integral, we see that for each y ∈ [1, 2], we have x ∈ [y−2, 2−y],
so

∫∫

R

y dx dy =

∫ 2

1

∫ 2−y

y−2

y dx dy

=

∫ 2

1

y[(2− y)− (y − 2)]dy

=

∫ 2

1

(4y − 2y2)dy

= 4/3.

To go the other way, for each x ∈ [−1, 1], we have y ∈ [1, x+2] on the left side, and y ∈ [1, 2−x]
on the right. So we split the integral into two pieces:

∫∫

R

y dy dx =

∫ 0

−1

∫ x+2

1

y dy dx +

∫ 1

0

∫ 2−x

1

y dy dx

=

∫ 0

−1

y2

2

∣∣∣∣
x+2

1

dx +

∫ 1

0

y2

2

∣∣∣∣
2−x

1

dx

=

∫ 0

−1

1

2
((x + 2)2 − 12) dx +

∫ 1

0

1

2
((2− x)2 − 12) dx

=
2

3
+

2

3
=

4

3
.

It might also be worth noting that we can do the above with a single integral using the
absolute value function. The top half of the triangle is given by y = 2− |x| for −1 ≤ x ≤ 1,
so the integral is ∫ 1

−1

∫ 2−|x|

1

y dy dx .

Or one could note that the integral is symmetric w.r.t. the y-axis (due to the region and the
integrand), so we only need

2

∫ 1

0

∫ 2−x

1

y dy dx .

9



8. Use polar coördinates to evaluate the integral

∫∫

R

x dA

where R is the region (a quarter annulus) bounded by the positive x-axis, the positive y-axis
and the circles x2 +y2 = 1 and x2 +y2 = 4. (If you divide the result by the area of the region,
you’ll get the x-value of the centroid of the figure. By symmetry this is also the y-value and
you’ll have the centroid.)

Draw a picture. The region is that between r = 1 and r = 2, between θ = 0 and θ = π/2.
Since x = r cos θ, we get

∫∫

R

x dA =

∫ 2

1

∫ π/2

0

r cos θ r drdθ

=

∫ 2

1

∫ π/2

0

r2 cos θ drdθ

= 7/3 .

Incidentally, this can be used to show that the centroid is at

(
28

9π
,
28

9π

)
.

??? Extra Credit ???

(7 points per ?.)

A.) (?) Write a parametric representation (with two real parameters) for the plane containing
P , Q, R in problem #A1.

B.) (?) For three arbitrary, distinct points A,B, C ∈ R3, prove that the point (1/5)(A+2B+2C)
lies strictly in the interior of the triangle ABC.

C.) (?) Does the point you found in problem #A2 lie within 4PQR? Justify your answer.

D.) (?) What kind of quadric surface does xy = z2 represent? (Take an educated guess and
justify it.)

E.) (?) Using rectangular coördinates (instead of polar coördinates), write an iterated integral
for the integral in problem #B8 (in either dx dy or dy dx order, but what I’m looking for
are the correct limits).

∫ 1

0

∫ √
4−x2

√
1−x2

x dx dy +

∫ 2

1

∫ √
4−x2

0

x dx dy

F.) (?· · ·?) Ask a question you wish I had asked and answer it. Make it a good one; points do
vary.
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