
Calc III Fall 2003

MATH 223 Name:

Test #3

Instructions: Answer all problems correctly. Calculators are not allowed. Each st?rred problem
is extra credit and each ? is worth 10 points. I’ll award a maximum of 120 points on this exam
(including a curve, if any.)

1. (15 points) For each of the following, determine whether or not f(x, y) has a limit at (0, 0)
Justify your conclusions — no one-word answers.

a.) f(x, y) =
x2 + 2xy + 4y2

x2 + 4y2

No limit. Looking along x = 0 and y = 0, respectively, don’t give sufficient info, since
f(0, y) ≡ 1 for all y 6= 0 and f(x, 0) ≡ 1 for all x 6= 0, resp. But if we look along other
lines, y = mx, we see that

f(x,mx) =
x2 + 2x(mx) + 4(mx)2

x2 + 4(mx)2
=

1 + 2m + 4m2

1 + 4m2
(∀x 6= 0)

which is not constant for all m (take m = ±1, for example).

b.) f(x, y) =
x3 + 2x2y + 4y3

x2 + 4y2

The limit is zero, as you suspect if you try various lines through the origin. A proof (of
which many variations are possible) is as follows.

|f(x, y)− 0| =
|x3 + 2x2y + 4y3|

x2 + 4y2

≤ |x|3 + |2x2y|+ |4y3|
x2 + 4y2

(by the triangle inequality)

=
x2|x|+ 2x2|y|+ 4y2|y|

x2 + 4y2

≤ (x2 + 4y2)|x|+ 2(x2 + 4y2)|y|+ (x2 + 4y2)|y|
x2 + 4y2

= |x|+ 3|y|,

which goes to zero. So the limit is squeezed to zero.
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c.) f(x, y) =
x4 + 2x2y2 + 4y4

x2 + 4y4

This one has no limit. Letting x = 0 and y = 0 easily gives two different limits.

2. (15 points) Let f(x, y) = x2 + y2 + x2y.

(a) Find the partial derivatives, fx(x, y) and fy(x, y).

fx(x, y) = 2x + 2xy and fy(x, y) = 2y + x2.

(b) Evaluate the above at the point P = (2, 1).

fx(2, 1) = 8 and fy(2, 1) = 6.

(c) Find the second partials, fxx(x, y), fxy(x, y), fyx(x, y), fyy(x, y).

fxx(x, y) = 2 + 2y, fxy(x, y) = fyx(x, y) = 2x, fyy(x, y) = 2.

3. (10 points) The point (1,−1, 1) lies on the surface defined by x2 − xz + yz3 + 1 = 0. Find
∂z

∂x
at that point.

First it must be noted that the point (1,−1, 1) does indeed lie on the surface given, by direct
substitution. So we can implicitly differentiate to get

2x− z − x
∂z

∂x
+ 3yz2 ∂z

∂x
= 0,

which we solve for
∂z

∂x
to get

∂z

∂x
=

z − 2x

3yz2 − x
.

Plugging in the point gives
∂z

∂x
=

1− 2(1)

3(−1)12 − 1
=

1

4
.

You could also use a formula derived in class. Let the left-hand side of the surface’s defining
equation be G(x, y, z), so the surface is given by G(x, y, z) = 0. (Any rearrangement of the

form G(x, y, z) = constant will do.) Then use the formula
∂z

∂x
= −Gx/Gz.

4. (10 points) Referring to problem #2, find the linear approximation to the function f(x, y) at
the point P .

The linearization is the equation of the tangent plane,

L(x, y) = f(2, 1) + (x− 2)fx(2, 1) + (y − 1)fy(2, 1)

= 9 + 8(x− 2) + 6(y − 1),

or if you prefer, L(x, y) = 8x + 6y − 13.
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5. (10 points) In problem #2, in the direction of which unit vector is there the greatest rate of
increase of f(x, y) at the point P?

The rate of greatest increase is in the direction of the gradient, ∇f(2, 1) = 〈8, 6〉, so the desired
unit vector is 〈4/5, 3/5〉.

6. (10 points) In problem #2, what is the rate of change of f(x, y) at the point P as one begins
to move directly toward the origin?

We are being asked for the directional derivative Dûf(2, 1), where û is the unit vector pointing
from (2, 1) to (0, 0), i.e., û = 〈−2

√
5,−1/

√
5〉. So

Dûf(2, 1) = ∇f(2, 1) · û
= 〈8, 6〉 · 〈−2

√
5,−1/

√
5〉

= −22/
√

5.

3



7. (10 points) In problem #2, let u(r, t) = r2−rt and v(r, t) = 2r+3t. Let g(r, t) = f(u(r, t), v(r, t)).
Use the chain rule to find gt(1,−1).

The chain rule implies (writing in one of the terrible chain rule notations) that

∂g

∂t
=

∂g

∂x

∂x

∂t
+

∂g

∂y

∂y

∂t
,

which translates to

gt(r, t) = fx(u(r, t), v(r, t))ut(r, t) + fy(u(r, t), v(r, t))vt(r, t).

You’ll notice that
u(1,−1) = 2 and v(1,−1) = −1,

so you already have fx and fy and so you can get

fx(2,−1) = 0, fy(2,−1) = 2.

Now just use
ut(r, t) = −r and vt(r, t) = 3

to get
ut(1,−1) = −1 and vt(1,−1) = 3

and finally,
gt(1,−1) = 0 · (−1) + 2 · 3 = 6.

8. (15 points) For the function f(x, y) in problem #2, find all the critical points of f(x, y) and
classify the behavior at each of these (as local max, saddle point, etc.).

Our critical points are the solutions to

fx(x, y) = 2x + 2xy = 0 and fy(x, y) = 2y + x2 = 0,

the first of which gives either x = 0 or y = −1. If x = 0 then the second equation gives y = 0,
so (0, 0) is a critical point; if y = −1 we get x2 = 2 so (±√2,−1) are two more, and these three
are the only ones. We also have

fxx(x, y) = 2 + 2y, fxy(x, y) = fyx(x, y) = 2x, fyy(x, y) = 2,

so
D := fxxfyy − f 2

xy = (2 + 2y)(2)− 4x2.

Clearly, D = 4 > 0 at (0, 0), and since fxx > 0 there (as is fyy), there is a relative minimum
there. At (±√2,−1), D = −8 < 0, so each of these two c.p. is a saddle point.
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9. (15 points) For the function f(x, y) in problem #2, find the absolute maximum and minimum
value of f(x, y) on the closed triangular region having vertices (2, 1), (−1, 1), (2,−2). (There
are a few square roots involved in some of the evaluations, but don’t panic! They are relatively
easily approximated. Also, not all the critical points of the function are inside the region, so
don’t evaluate any that aren’t necessary.)

We already have the c.p. from the previous problem, and moreover, two of these are saddle
points which we may ignore! To evaluate things on the boundary of the triangle we can form
three functions, which I’ll denote as g1, g2 and g3, which will describe f(x, y) when restricted
to the segment along the top of the top (y = 1) of the triangle, along the vertical side (x = 2)
and along the remaining side (y = −x). First,

g1(x) = f(x, 1) = 1 + 2x2, − 1 ≤ x ≤ 2,

which has a minimum a c.p. at x = 0 (clearly a local minimum for g1) and we get the
corresponding c.p. (0, 1) of f . Next,

g2(y) = f(2, y) = (y + 2)2, − 2 ≤ y ≤ 1,

which has a c.p. at y = −2. But this corresponds to the “corner” point (2,−2), which we’ll
deal with separately. Finally,

g3(x) = f(x,−x) = −x3 − 2x2, − 1 ≤ x ≤ 2,

which has c.p. at x = 0 and x = −4/3. The latter is not in our region of interest, and the
other is the origin, which we are already aware of as a c.p. So, we tabulate the function at
these points and at the vertices of the triangle and get

(x, y) f(x, y)
(0, 0) f(0, 0) = 0 (min)
(0, 1) f(0, 1) = 1
(−1, 1) f(−1, 1) = 3
(2, 1) f(2, 1) = 9 (max)
(2,−2) f(2,−2) = 0 (min)
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? ? ? ? Extras ? ? ? ?

A.) (?) Discuss the limits lim
(x,y)→(0,0)

x3 + y3

x2 + xy + y2
and lim

(x,y)→(0,0)

x3 + y3

x2 + 3xy + y2
.

B.) (?) For the function f(x, y) in problem #2, verify the differentiability of f at P by finding
functions ε1 and ε2 that satisfy the criterion in the definition of differentiability.

C.) (?) If f(x, y) =
sin(

√
x2 + y2)√

x2 + y2
, find fy(0, 0).

D.) (?) Give an explicit formula for a function f(x, y) that has a saddle point at (0, 0) but for which
the second derivative test is inconclusive.

E.) (?· · ·?) Ask a question you wish I had asked and answer it. Points may vary.
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