Calc III MATH 223

Test #3

Instructions: Answer all problems correctly. Each numbered problem is worth 12 points. Each st \star rred problem is "extra credit" and each \star is worth 8 points. Do as many problems as you wish, but no grade higher than 115 points (including a curve, if any) will be awarded on the test. Calculators are not allowed. *Clarity counts, so be clear. Points will be lost if I have to guess what you're doing. This is especially true when you are asked to prove something.*

- 1. (15 points) Consider the curve $\mathbf{r}(t) = \langle 2t^2 t, t^2, 3t + 2 \rangle$.
 - (a) Calculate the curvature $\kappa(t)$ at each t.
 - (b) Calculate the tangential and normal components, $a_T(t)$ and $a_N(t)$, of the acceleration vector.
 - (c) What is the maximum curvature and for what t is it attained?
- 2. (8 points) Consider the ellipse given by $x(t) = a \cos t$, $y(t) = b \sin t$ and assume a > b > 0. 23
 - (a) Calculate the *radius* of curvature at each t.
 - (b) Find the maximum and minimum values of the radius of curvature.
- 3. (15 points) Begin with the typical, basic assumptions of projectile motion near the surface of the earth, namely that x''(t) = 0 and y''(t) = -g, where g is a constant (the constant downward acceleration due to gravity). Thus we have $\mathbf{r}''(t) = \langle 0, -g \rangle$. Assume that a projectile is launched from an initial position of (x_0, y_0) with an initial speed v_0 and an initial angle θ relative to the positive x-axis.
 - (a) By integrating once, derive the equation for the velocity,

$$\mathbf{r}'(t) = \mathbf{v}(t) = \langle v_0 \cos \theta, v_0 \sin \theta - gt \rangle.$$

(b) By integrating once more, derive the equation for the position,

$$\mathbf{r}(t) = \langle x_0 + (v_0 \cos \theta)t, \ y_0 + (v_0 \sin \theta)t - gt^2/2 \rangle.$$

(c) Show that the maximum height attained by the projectile is

$$y_0 + \frac{v_0^2 \sin^2 \theta}{2g}$$

(This assumes that θ is in either quadrant I or II, of course, i.e., that we aren't shooting the projectile toward the ground at t = 0.) Show all steps.

15

- 4. (8 points) Find and sketch the domain of the functions below.
 - (a) $f(x,y) = \sqrt{x} \sqrt{y-1}$.
 - (b) $f(x,y) = \ln(4 x^2 y^2).$
- 5. (10 points) For each of the following, prove that f(x, y) does not have a limit at (0, 0).

(a)
$$f(x,y) = \frac{2x^2 - xy + 3y^2}{x^2 + 2y^2}$$

(b) $f(x,y) = \frac{x^4 + 3x^2y^2 + 5y^4}{x^2 + 4y^4}$

- 6. (10 points) Prove that $\lim_{(x,y)\to(0,0)} \frac{2x^3 x^2y + 3y^3}{x^2 + y^2} = 0$. (I recommend "squeezing" the results 66 out of it, but there are other ways. Take care to justify any inequality you use.)
- 7. (10 points) Let $f(x, y) = \sin(5x 7y) + x^2y^3$.
 - (a) Find the partial derivatives, $f_x(x, y)$ and $f_y(x, y)$.
 - (b) Find the second partials, $f_{xx}(x,y), f_{xy}(x,y), f_{yx}(x,y), f_{yy}(x,y)$.
- 8. (10 points) The point (1, 2, 3) lies on the surface defined by

$$y^2 + 3xyz - x^2z^3 = -5.$$

Find $\frac{\partial z}{\partial u}$ at that point.

9. (5 points) Show that the function

$$z = e^{-5x} \sin 5y$$

solves Laplace's equation,

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0.$$

- 10. (10 points) Write concisely, completely and clearly the *definition of differentiability* for a real-101 valued function of two variables.
- 11. (10 points) Prove that the function $f(x, y) = 3xy + x^2$ is differentiable at the point P = (1, 2). 111 (Reminder: find suitable ε_1 and ε_2 and show that they have the necessary properties.)
- 12. (10 points) Let the function f and the point P be as in the previous problem.
 - (a) Find an equation for the tangent plane to z = f(x, y) at P.
 - (b) Find an expression for the linearization of f at P.

76

86

46

56

91

121

$\star \star \star \star EXTRAS \star \star \star$

- A. $(\star\star)$ Referring to problem #3, let $v_0 \neq 0$, assume that $0^\circ < \theta < 90^\circ$ and let $(x_0, y_0) = (0, 0)$. The range of the projectile is the value of x(t) when the object hits the ground. Find the range as a function of v_0 and θ . Then, show that for a fixed value of v_0 , the greatest value for the range occurs when $\theta = 45^\circ$.
- B. (\star) Show that the curve in problem #1 lies entirely in a plane. Find an equation for the plane in standard form.
- C. (*) Repeat problem #6, but first change the denominator of the function to $2x^2 + 3y^2$.
- D. (\star) State clearly and completely **Clairaut's Theorem** concerning mixed partials.
- E. (*) Find $f_y(0,0)$ if $f(x,y) = \sqrt[5]{x^5 + y^5}$. Show all steps, which count.
- F. (\star) Give an example of a function f(x, y) whose mixed partial derivatives f_{xy} and f_{yx} exist at a point but are not equal there.
- G. (\star) If you're standing on the surface given by z = f(x, y) at the point (a, b, f(a, b)), how "steep" is the surface there? Answer this by finding the angle that the tangent plane makes with respect to the plane z = 0. (We'll talk more about this idea soon, when we discuss the **gradient** of a function.)
- H. (\star) Suppose that the functions f(x, y, z), u(s, t), v(s, t) and w(s, t) are all differentiable. Let

$$z = f(u(s,t), v(s,t), w(s,t)).$$

Use the chain rule to write the formula for $\frac{\partial z}{\partial t}$.

I. $(\star \cdots \star)$ Ask a question you wish I had asked and answer it. Points vary depending on the difficulty of the question (and the correctness of the solution). Very few points (if any) will be awarded for a problem that is essentially represented elsewhere on the test. (In other words, no repeats.)