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Let A′ be the midpoint of segment [AB] on a regular octagon [ABCDEFGH]

and likewise define the other seven midpoints B′ through H ′ cyclically. Let

a denote the intersection of segments [A′G] and [B′H] and define b through

h cyclically. Prove that the inner regular octagon [abcdefgh] has one-third

the area of the outer octagon [ABCDEFGH].

Solution. One can arrive at an easy proof algebraically with vectors or

complex numbers. The following image shows a dissection that yields a

proof.
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Eight congruent copies of polygon M0 = [AA′BTaP ] form the outer ring—

the region outside the inner octagon. (These copies are obtained by rotating

M0 by multiples of 45◦ about the octagons’ center O.) Dividing M0 into

the three pieces M1 = [PA′BTa′] (pink), M2 = [a′aP ] (green), and M3 =

[AA′P ] (cyan), we see that polygon m0 = [Opabb′q] within the inner octagon

appears to be comprised of congruent copies of M1, M2, and M3, namely,

m1 = [bb′qOa′] (pink), m2 = [a′pa] (green), and m3 = [qb′c] (cyan). If this

is true, then since the inner ring consists of four congruent copies of m0, it

follows that the inner polygon has area equal to 4/(4 + 8) = 1/3 times the

area of the outer polygon.
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It would be nice to have a completely visual proof of the congruence suggested

in the previous paragraph—let’s hope a reader submits one. Meanwhile, we

can prove the congruence using some simple trigonometry, which at least

confirms our claim.

We assume throughout that AB = 1.

Let β = ∠G′A′G and let α = ∠AA′G. By considering the added lines parallel

to segments [AH] and [GF ] we can deduce that
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and from there we find (after some simplification) that

tanα = tan(45◦ + β) =
1 + tan β

1− tan β
=
√

2.

Back to our congruences, we now have that tan∠AA′P =
√

2. Letting

x = ab it is easy to see that tan∠qb′c = (x/
√

2)/(x/2) =
√

2 and it follows

that ∠AA′P ∼= ∠qb′c. That implies via supplements that ∠PA′B ∼= ∠bb′q.

Using fairly obvious relationships and summing angles in M1 and m1 we

obtain that ∠A′BT ∼= ∠b′qO, so we now can quickly see that M1
∼= m1. It

was already clear at a glance that M2
∼= m2. Finally, our observations about

angles already tell us that M3 and m3 are similar, but now the shared side

of M3 and m3 gives qb′ = A′B = AA′, hence M3
∼= m3. X
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