Proposed by Rick Mabry, Dept. of Mathematics, LSU Shreveport, Shreveport, LA 71115-2399, Richard.Mabry@LSUS.edu

Let A^{\prime} be the midpoint of segment $[A B]$ on a regular octagon $[A B C D E F G H]$ and likewise define the other seven midpoints B^{\prime} through H^{\prime} cyclically. Let a denote the intersection of segments $\left[A^{\prime} G\right]$ and $\left[B^{\prime} H\right]$ and define b through h cyclically. Prove that the inner regular octagon [abcdefgh] has one-third the area of the outer octagon $[A B C D E F G H]$.

Solution. One can arrive at an easy proof algebraically with vectors or complex numbers. The following image shows a dissection that yields a proof.

Eight congruent copies of polygon $M_{0}=\left[A A^{\prime} B T a P\right]$ form the outer ringthe region outside the inner octagon. (These copies are obtained by rotating M_{0} by multiples of 45° about the octagons' center O.) Dividing M_{0} into the three pieces $M_{1}=\left[P A^{\prime} B T a^{\prime}\right]$ (pink), $M_{2}=\left[a^{\prime} a P\right]$ (green), and $M_{3}=$ $\left[A A^{\prime} P\right]$ (cyan), we see that polygon $m_{0}=\left[O p a b b^{\prime} q\right]$ within the inner octagon appears to be comprised of congruent copies of M_{1}, M_{2}, and M_{3}, namely, $m_{1}=\left[b b^{\prime} q O a^{\prime}\right]$ (pink), $m_{2}=\left[a^{\prime} p a\right]$ (green), and $m_{3}=\left[q b^{\prime} c\right]$ (cyan). If this is true, then since the inner ring consists of four congruent copies of m_{0}, it follows that the inner polygon has area equal to $4 /(4+8)=1 / 3$ times the area of the outer polygon.

It would be nice to have a completely visual proof of the congruence suggested in the previous paragraph-let's hope a reader submits one. Meanwhile, we can prove the congruence using some simple trigonometry, which at least confirms our claim.

We assume throughout that $A B=1$.

Let $\beta=\angle G^{\prime} A^{\prime} G$ and let $\alpha=\angle A A^{\prime} G$. By considering the added lines parallel to segments $[A H]$ and $[G F]$ we can deduce that

$$
\tan \beta=\frac{\frac{1}{2} \sqrt{1 / 2}}{\frac{3}{2} \sqrt{1 / 2}+1}=\frac{1}{3+2 \sqrt{2}}=3-2 \sqrt{2}
$$

and from there we find (after some simplification) that

$$
\tan \alpha=\tan \left(45^{\circ}+\beta\right)=\frac{1+\tan \beta}{1-\tan \beta}=\sqrt{2}
$$

Back to our congruences, we now have that $\tan \angle A A^{\prime} P=\sqrt{2}$. Letting $x=a b$ it is easy to see that $\tan \angle q b^{\prime} c=(x / \sqrt{2}) /(x / 2)=\sqrt{2}$ and it follows that $\angle A A^{\prime} P \cong \angle q b^{\prime} c$. That implies via supplements that $\angle P A^{\prime} B \cong \angle b b^{\prime} q$. Using fairly obvious relationships and summing angles in M_{1} and m_{1} we obtain that $\angle A^{\prime} B T \cong \angle b^{\prime} q O$, so we now can quickly see that $M_{1} \cong m_{1}$. It was already clear at a glance that $M_{2} \cong m_{2}$. Finally, our observations about angles already tell us that M_{3} and m_{3} are similar, but now the shared side of M_{3} and m_{3} gives $q b^{\prime}=A^{\prime} B=A A^{\prime}$, hence $M_{3} \cong m_{3}$.

