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Proposed Problem. Let f(x) and g(y) be twice continuously differentiable functions

defined in a neighborhood of zero, and assume that

1. f(0) = 1 and g(0) = 0,

2. f ′(0) = 0 and g′(0) = 0,

3. f ′′(0) < 0 and g′′(0) > 0.

Consider the curves x = g(y) and y = rf(x/r). For sufficiently small r > 0, show that the

curves have an intersection (xr, yr) in the first quadrant of smallest x-value. (So, loosely

speaking, there is a “first” intersection point. In general, there may be infinitely many

such intersection points in the first quadrant even for arbitrarily small r, but there is one

nearest to the y-axis.) Let (tr, 0) denote the x-intercept of the line passing through the

points (0, r) and (xr, yr).

a.) Show that lim
r→0+

tr necessarily exists, and find the limit. (This is a generalization

of Problem #5 in “Which Way did the Bicycle Go?” by Konhauser, Velleman, and

Wagon, in which f(x) =
√

1− x2 and g(y) = 1−
√

1− y2.)

b.) Is the condition of the continuity of f ′′ and g′′ necessary?

Solution.

a.) The limit exists and equals
−4

g′′(0)f ′′(0)
.

Proof. First we show the existence of (xr, yr) for r sufficiently small. Since f ′′(0) < 0 and

f ′′ is continuous on an interval containing zero, there exists a > 0 such that f is defined

on [0, a], and for all x ∈ (0, a], 0 < f(x) ≤ 1, f ′(x) < 0, and f ′′(x) < 0. We shall therefore

assume that f is defined only on [0, a]. Similarly, since g′′(0) > 0 and g′ is continuous at
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the origin, there exists c such that 0 < c < f(a) with 0 < g′(z) < a/f(a) for all z ∈ (0, c).

The Mean Value Theorem implies that 0 < g(z) < (a/f(a))z for all z ∈ (0, c). Consider

the quadrilateral Q with vertices (0, 0), (0, c), (g(c), c), and (g(c), f(a)g(c)/a). The graph

of x = g(y) for 0 ≤ y ≤ c is a continuous, strictly increasing function from the origin to

the horizontal side of Q. For any r such that 0 < r < g(c)/a, the graph of y = rf(x/r) for

0 ≤ x ≤ ar is a continuous, strictly decreasing function which joins the horizontal side of

Q (if c < r) or the vertical side of Q which contains the origin (if r < c) to the oblique side

of Q – this graph is just a “scaled-down” version of the graph of y = f(x) for 0 ≤ x ≤ a.

Thus it is obvious that the intersection point (xr, yr) exists and is unique in the interval

0 ≤ x ≤ ar for all 0 < r < g(c)/a (see the diagram at the end of this note for the case

r < c). For those who require a rigorous proof of this fact using the Intermediate Value

Theorem, we include it at the end of part (a).

Since the curve y = rf(x/r) is strictly decreasing for 0 ≤ x ≤ ar, for 0 < r < g(c)/a

it is clear that yr < r and trivially xr < ar, that is, xr/r < a.

Using Taylor’s theorem, there exists ζr ∈ (0, yr) such that

xr

r
=

g(yr)− g(0)
r

=
1
2r

y2
rg′′(ζr)(1)

→ 0 as r → 0,

since yr < r and g′′ is continuous at the origin, hence bounded as r → 0. Since yr → 0 we

see that ζr → 0 as r → 0.

Similarly, using Taylor again along with (1), there exists ξr ∈ (0, xr/r) such that

yr

r
− 1 = f

(xr

r

)
− f(0)
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=
1
2

(xr

r

)2

f ′′(ξr)(2)

→ 0 as r → 0,(3)

where ξr → 0 as r → 0.

An easy calculation of tr in terms of xr and yr combined with (2), (1), and (3) (in

that order) along with the continuity of f ′′ and g′′ at the origin, yields

tr =
−rxr

yr − r

=
−xr

f(xr/r)− f(0)

=
−2

xrf ′′(ξr)/r2

=
−4

(yr/r)2g′′(ζr)f ′′(ξr)

→ −4
g′′(0)f ′′(0)

as r → 0, completing the proof.

Now we provide a rigorous argument verifying the existence of the intersection point

(xr, yr) for r small enough. Choose a and c as above, recall that 0 < g(z) < (a/f(a))z for

all z ∈ (0, c), and look at the function

hr(y) ≡ y − rf(g(y)/r).

Observe that hr(0) = −r < 0, so if we can find some zr > 0 for which hr(zr) > 0, we will

be done by the Intermediate Value Theorem. Let r ∈ (0, g(c)/a). Since g is increasing on
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(0, c), it is one-to-one there. Since 0 < ar < g(c), there must be some zr ∈ (0, c) for which

g(zr) = ar. Then

hr(zr) = zr − rf(g(zr)/r)

= zr − rf(a)

> 0,

since f(a) < azr/g(zr) = azr/(ra) = zr/r. Thus there exists yr ∈ (0, zr) for which

hr(yr) = 0 and we let xr = g(yr), completing the existence proof.

The point of intersection is unique in the interval [0, ar] by the strict monotonicity of

the two functions on this interval. 45

b.) The requirement of continuity of the second derivatives is unnecessary. In fact, the

result holds so long as the first derivatives exist on an interval about 0, and even if

the second derivatives do not exist at any points other than zero. The result can then

be proven using the following

Theorem. Let f be differentiable on an open interval J containing a and suppose that

f ′′(a) exists and is not zero. For each x ∈ J \ {a}, let cx denote any number between a

and x for which f(x) = f(a) + (x− a)f ′(cx). Then

lim
x→a

cx − a

x− a
=

1
2
.

For the proof of this theorem, see the note “On the Meanness of the Mean Value in

the Mean Value Theorem” in this Monthly.

Now, even without the above theorem, the result (1) holds, since by Taylor’s theorem,
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there exists ζr ∈ (0, yr) such that

xr

r
=

g(yr)− g(0)
r

=
1
r
yrg

′(ζr)

→ 0 as r → 0,

since yr < r and g′ is continuous at 0. (Note that we did not explicitly say that g′ is

continuous at 0, but it follows because g′ is defined in a neighborhood of 0, g′(0) = 0, and

g′′(0) exists.)

To obtain (3), we likewise have ξr ∈ (0, xr/r) for which

yr

r
− 1 = f

(xr

r

)
− f(0)

=
xr

r
f ′(ξr)

→ 0 as r → 0.

Finally, the above-mentioned Theorem is used to prove the final result, by implying

the following two limits.

lim
r→0

ζr

yr
=

1
2

and lim
r→0

ξr

(xr/r)
=

1
2
.

(The ζr and ξr below are as in the two preceding paragraphs.)

We have, finally, that

xr = g(yr)− g(0) = yrg
′(ζr) = r2

(yr

r

)2 g′(ζr)
ζr

ζr

yr
,
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and so
tr =

−r xr

yr − r
=

−xr

f(xr/r)− f(0)

=
−xr

xr

r
f ′(ξr)

=
−xr

ξr

xr

r

f ′(ξr)
ξr

=
−r2

(
xr

rξr

)

r2
(yr

r

)2 g′(ζr)
ζr

ζr

yr

f ′(ξr)
ξr

→ −4
g′′(0)f ′′(0)

, as r → 0,

and we are done. ••
^
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