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PROBLEMS

11327. Proposed by Rick Mabry and Debbie Shepherd, LSUS, Shreveport, LA. A game

of chance determines a sequence 〈 fN 〉 of functions on [0, 1]. The N th function fN is

constructed as follows: First, real numbers t1
N , . . . , t N

N are chosen, independently,

with tn
N drawn at random from the interval [n, 2n] with uniform distribution. The list

(t1
N , . . . , t N

N ) is then sorted in increasing order to give a second list (s1
N , . . . , sN

N ).

Finally, an increasing function fN is defined on [0, 1] by connecting the dots (0, 0)

and (n/N , sn
N/N ) for 1 ≤ n ≤ N . Show that there is a continuous function g from

[0, 1] onto [0, 2] such that with probability 1, limN→∞ sup0≤x≤1 | fN (x) − g(x)| = 0,

and find a simple formula for g.

11328. Proposed by Dmitris Vartziotis, Ioánnina, Greece. Let ABC D be a convex

quadrilateral. Let P be the point outside ABC D such that angle AP B is a right angle

and P is equidistant from A and B. Let points Q, R, and S be given by the same

conditions with respect to the other three edges of ABC D. Let J , K , L , and M be the

midpoints of P Q, Q R, RS, and S P , respectively. Prove that J K L M is a square.

11329. Proposed by T. Amdeberhan and Victor H. Moll, Tulane University, New Or-

leans, LA. Let f (t) = 2−t ln Ŵ(t), where Ŵ denotes the classical gamma function, and

let γ be Euler’s constant. Derive the following integral identities:
∫ ∞

0

f (t) dt = 2

∫ 1

0

f (t) dt −
γ + ln ln 2

ln 2
,

∫ ∞

0

t f (t) dt = 2

∫ 1

0

(t + 1) f (t) dt −
(γ + ln ln 2)(1 + 2 ln 2) − 1

ln2 2
.

11330. Proposed by Marian Tetiva, National College ”Gheorghe Roşca Codreanu”,

Bı̂rlad, Romania. For a triangle with semiperimeter s, inradius r , circumradius R, and

heights ha , hb, and hc, show that

ha + hb + hc − 9r ≥ 2s

√

2r

R
− 6

√
3 r.

December 2007] PROBLEMS AND SOLUTIONS 925


