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1457. Proposed by Larry Carter, IBM Watson Research Center, York-

town Heights, New York, John Duncan, University of Arkansas, Fayetteville,

Arkansas, and Stan Wagon, Macalester College, St. Paul, Minnesota.

a. For a point P inside a circle draw three chords through P making

six 60◦ angles at P and form two regions by coloring the six “pizza slices”

alternately black and white. Prove that the region containing the center has

the larger area.

b.∗ Prove that if five chords make ten 36◦ angles at P , then the region

containing the center has the lesser area.

Solution by Paul Deiermann and Rick Mabry, Louisiana State University in

Shreveport, Shreveport, LA 71115-2399.

a. Our pizza is the unit disk. Without loss of generality, let P have polar

coördinates (r, θ), with 0 ≤ θ < π/3, and let one of the cuts be parallel to the

x-axis. (Any other configuration can be rotated into one like this.) We prove

the result by showing that the region containing the origin, call it R(|||) (the

shaded region in figure 1), comprises no less than half the area of the pizza.

(We will not always explicitly distinguish regions from their areas, it being

clear from the context.)
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Let P ∗ denote the intersection of the x-axis with the cut in the direction of

π/3. Now take a fresh pizza and make cuts parallel to those on the first,

but through P ∗. Then R(≡), the region on the second pizza corresponding

to R(|||), is exactly one half of the pizza. (“Pie over two.” See figure 2.) If

R(|||) is bigger than or equal to R(≡), we’re done.
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Overlay the two pizzas, as in figure 3. (This picture is the proof.) We

disregard the doubly shaded regions, since they occur in both pizzas, and

compare what is left, the two “strips,” ABCD and A′B′C ′D′, minus their

intersection. But the intersection, being common to both, can be ignored and

we are left comparing the filled strips. These strips are of equal thickness,

but ABCD is clearly the larger, since A′B′C ′D′ sits at a greater distance

from the center.
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b.∗ Begin the same way as above, but restrict P so that 0 ≤ θ < π/5,

and let P ∗ denote the intersection of the x-axis with the cut in the direction

of π/5. Form the two pizzas and overlay them, as in figure 4.
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Notice that the problem now amounts to comparing the sum ABCD +

EFGH of the areas of the strips on the first pizza with A′B′C ′D′+E ′F ′G′H ′

on the second, plus or minus the holes or overlaps at the intersections — we

need to be careful here, but we will show later that it suffices to consider

the entire strips. This comparison is no longer trivial, as in part a., for

although ABCD and A′B′C ′D′ have the same “width”, as do EFGH and

E ′F ′G′H ′, the “lengths” of these strips do not coöperate — ABCD is larger

than A′B′C ′D′ while EFGH is smaller than E ′F ′G′H ′.

Let us delay the problem of the intersections for now, and show that

ABCD + EFGH ≤ A′B′C ′D′ + E ′F ′G′H ′. We need to find the area of

a strip, by which we mean the difference of two segments of the unit circle.

Consider a strip at perpendicular distance D from the center of the circle, and

having width W , as in figure 5. Its area is easily found to be s(D)−s(D+W ),

where s(x) = cos−1(x)− x
√

1− x2 is the area of the segment at distance x.

(This is the sector OPQ minus the triangle OPQ in figure 6.)
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Returning to figure 4, let w denote the distance from P to P ∗ and d the

distance from P ∗ to the center [Somehow the version printed in Math. Mag.

has the d’s and w’s reversed at this point. We intended for the definitions of

d and w to be consistent with the use of s(D)−s(D+W ), as mentioned just

before the previous figures. So I’m restoring that consistency in this online

version], and let αj = jπ/5, dj = d sin αj, wj = w sin αj, for j = 0, 1, 2. Let

∆R = R(|||)−R(≡)

and let

∆S = (ABCD + EFGH)− (A′B′C ′D′ + E ′F ′G′H ′).

(We will show later that ∆R = ∆S.) Then it is easy to see that

ABCD = s(d0)− s(d0 + w1), A′B′C ′D′ = s(d2)− s(d2 + w1),
EFGH = s(d2)− s(d2 + w2), E ′F ′G′H ′ = s(d1)− s(d1 + w2),

6



and so

∆S = s(0) + s(d2 + w1) + s(d1 + w2)− s(d2 + w2)− s(w1)− s(d1). (1)

Next we observe that s′(x) = −2
√

1− x2, so we have, with the aid of

Taylor’s theorem,

s(x) = s(0) +

∫ x

0

s′(t) dt

=
π

2
−

∫ x

0

(
1− t2

2
− t4

8
− t6

16
+ · · ·

)
dt

=
π

2
− 2x +

x3

3
+

x5

20
+

x7

56
+ · · · , (2)

where all the powers beginning with x3 are odd and of the same (positive)

sign. Applying this to the expression in (1), we see that the contributions of

the constant term and the x term cancel in the sum. If each of the remaining

terms just happened to yield non-positive contributions, we would be done.

This is exactly what happens! Let n be odd and set g = 2 cos α1 = 1.681 · · ·
(the golden ratio). Then we have d2 = gd1 and w2 = gw1, so that the

contribution of xn in (2) to the expression in (1) is

(d2 + w1)
n + (d1 + w2)

n − (d2 + w2)
n − wn

1 − dn
1

= (gd1 + w1)
n + (d1 + gw1)

n − (gd1 + gw1)
n − wn

1 − dn
1

= −wn
1 − dn

1 +
n∑

k=0

(n

k

) [
(gd1)

kwn−k
1 + dk

1(gw1)
n−k − (gd1)

k(gw1)
n−k

]

=
n−1∑

k=1

(n

k

)
dk

1w
n−k
1

[
gk + gn−k − gn

]
.

We’re done if

gk + gn−k − gn ≤ 0, for all n ≥ 3 and 0 < k < n. (3)
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In fact, for n = 3 we have equality for k = 1, 2 (since the golden ratio satisfies

g2 − g − 1 = 0), and we proceed by induction. Assuming that (3) holds for

some n ≥ 3 and whenever 0 < k < n, we let 0 < k < n + 1. Then

gk + gn+1−k − gn+1 = g(gk−1 + gn−k − gn)

= g(gk + gn−k − gn) + gk − gk+1

≤ gk − gk+1 (by the induction hypothesis, but only for 0 < k < n)

≤ 0 (since g > 1).

In the case that k = n, we get

gk + gn+1−k − gn+1 = gn + g − gn+1

= −g(g2 − g − 1)− g2(g − 1)(gn−2 − 1)

≤ 0,

completing the induction and establishing (3).

[The editors snipped everything in green that follows.] It remains only to

show that ∆R = ∆S, that is, that we can justify ignoring the intersections

of the strips. Let us associate the entire strips ABCD and EFGH with

R(|||), despite the fact that they have blank regions and R(≡)-regions, and

similarly, associate the strips A′B′C ′D′ and E ′F ′G′H ′ with R(≡). Then one

may simply verify in each case that the regions in the intersections have the

following properties.

(0) Any blank regions in the intersections of the strips belong to the same

number of R(|||)-strips as R(≡)-strips.

(1) Any R(|||) regions in the intersections of the strips belongs to one more

R(|||) region than R(≡) regions.
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(2) Any R(≡) regions in the intersections of the strips belongs to one more

R(≡) region than R(|||) regions.

(3) Any simultaneously R(≡) and R(|||) regions in the intersections of the

strips belong to the same number of R(|||)-strips as R(≡)-strips.

With little trouble, we can see that these properties will allow us to com-

pletely fill each strip with its associated region without affecting the difference

∆R — everything balances! Hence, ∆R = ∆S, the pizza is done and dinner

is served.

9


