The measure theoretic approach to the density of quasi-arithmetic sequences

Rick Mabry

LSU in Shreveport

Most of the preliminaries are found in the paper
"The measure theoretic approach to density," by R. Creighton Buck, Am. J. Math. 68 (1946), 560-580.

Def: A quasi-arithmetic sequence is a subset of \mathbb{Z} of the form

$$
\{\lfloor n a+b\rfloor\}_{n \in \mathbb{Z}},
$$

where $a>1$ is irrational and b is real.

Def: The density $d(A)$ of a set $A \subset \mathbb{Z}$ is given by

$$
d(A)=\lim _{N \rightarrow \infty} \frac{\#(A \cap[-N, N])}{2 N}
$$

when the limit exists.

Note: The results in Buck's paper, and many others deal with measures on the positive integers only, but can easily be extended to all of \mathbb{Z}. Conversely, our results can be restated in terms of subsets of \mathbb{N}.

Def: Let \mathcal{D}_{0} be the algebra of subsets of \mathbb{Z} generated by arithmetic sequences and finite sets.

Fact: Let m be any translation-invariant measure on \mathbb{Z} such that $m(\mathbb{Z})=1$, and containining the class \mathcal{D}_{0} in its domain of definition. Then

$$
m(A)=d(A) \quad \forall A \in \mathcal{D}_{0} .
$$

(The elements of \mathcal{D}_{0} have the uniqueness property relative to the class of all translation-invariant probability measures on \mathbb{Z}.)

Note: Such a measure m is only finitely additive. Also, m takes only rational values.

Def: For $S \subset \mathbb{Z}$, let

$$
m^{*}(S)=\inf \left\{m(A): S \subset A, A \in \mathcal{D}_{0}\right\}
$$

Fact: m^{*} is a translation-invariant outer measure on \mathbb{Z}, extending m.

Def: Let \mathcal{D}_{m} be the class of sets S for which

$$
m^{*}(X)=m^{*}(X \cap S)+m^{*}(X \backslash S), \quad \forall X \subset \mathbb{Z}
$$

Fact: The class \mathcal{D}_{m} is an algebra of sets; m^{*} is a translation-invariant finitely additive measure when restricted to \mathcal{D}_{m}.

Def: Let μ be this restriction of m^{*}, i.e.,

$$
\begin{gathered}
\mu: \mathcal{D}_{m} \rightarrow[0,1] \\
\mu(A)=m^{*}(A), \quad \forall A \in \mathcal{D}_{m} .
\end{gathered}
$$

Fact: The extension is proper, as there are infinite sets of μ-measure zero in \mathcal{D}_{m}. In fact, the range of μ is all of $[0,1]$.

Fact: $\mu(A)=d(A), \quad \forall A \in \mathcal{D}_{m}$.
Fact: The elements of \mathcal{D}_{m} have the uniqueness property relative to the class of all translationinvariant probability measures on \mathbb{Z}.

Fact: There are μ-nonmeasurable subsets of \mathbb{Z}, e.g., any $S \subset \mathbb{Z}$ for which $\#(A \cap S)=\infty=\#(A \backslash S) \quad \forall$ arithmetic series A. Thus, all quasi-arithmentic sequences are μ nonmeasurable.

Fact: If $S=\{\lfloor n a+b\rfloor\}_{n \in \mathbb{Z}}$, with $a>1$, then $d(S)=1 / a$.

Fact: I am annoyed by the conjunction of the previous two facts.

Question: Given the previous fact, why even mess with μ ? Isn't d much better?

Answer: For some things, yes. But the density d is not a measure on the class of sets with density. E.g., $\exists A, B$ each having a density but with $A \cap B$ having undefined density.

Example: Let X be any set with no density.
$X=\{\cdots \bullet \circ \bullet \bullet \circ \bullet \bullet \bullet \bullet \circ \circ \circ \circ \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \circ \circ \circ \circ \circ \circ \circ \cdots\}$
Define A and B by letting

$$
A=\left\{a_{n}\right\}_{n \in \mathbb{Z}}, \quad B=\left\{b_{n}\right\}_{n \in \mathbb{Z}},
$$

where

$$
a_{n}=3 n, \quad b_{n}=\left\{\begin{array}{lll}
3 n & \text { if } & n \in X \\
3 n+1 & \text { if } & n \notin X
\end{array}\right.
$$

Then

$$
d(A)=d(B)=1 / 3,
$$

but

$$
A \cap B=3 X
$$

so $A \cap B$ has no density.

Fact: There exist translation-invariant probability measures defined for all subsets of \mathbb{Z}. (This is a consequence of the Hahn-Banach theorem.)

Def: Let us call such measures "Banach measures" on \mathbb{Z}.

Def: We say that $A \subset \mathbb{Z}$ has "integer-shade equal to s " provided that

$$
\nu(A)=d(A)=s
$$

for every Banach measure on \mathbb{Z}. We then write

$$
\operatorname{sh}(A)=s
$$

Proposition: If $a>1$ and

$$
A=\{\lfloor n a+b\rfloor\}_{n \in \mathbb{Z}},
$$

then

$$
\operatorname{sh}(A)=1 / a
$$

(A minor detail of the proof of this assertion is left to a collaborator to be named later.)

Demonstration: Below is some of the set

$$
\begin{gathered}
A=A_{1}=\{\lfloor n \pi\rfloor\}_{n \in \mathbb{Z}} \\
\cdots \quad,-16,-13,-10,-7,-4,0,3,6,9,12,15, \\
18,21,25,28,31,34,37,40,43,47, \\
50,53,56,59,62,65,69,72,75,78,81, \cdots
\end{gathered}
$$

It is obvious (and even I can prove) that 3 transrates of

$$
A_{1}, \quad A_{1}+1, \quad A_{1}+2
$$

are disjoint, since the smallest gap is of length 3 . Letting ν be any Banach measure on \mathbb{Z}, it is clear that

$$
\nu\left(A_{1}\right) \leq \frac{1}{3} .
$$

Let

$$
A_{2}=\mathbb{Z} \backslash \biguplus_{0 \leq k<3}\left(A_{1}+k\right) .
$$

Below is some of A_{2}.

$$
\begin{gathered}
\cdots \quad,-45,-23,-1,24,46,68,90,112,134, \\
156,178,200,222,244,266,288,310, \\
\\
332,357,379,401,423,445,467, \cdots
\end{gathered}
$$

This time 22 translates of A_{2} are disjoint:
$\left(A_{2}+j\right) \cap\left(A_{2}+k\right)=\emptyset, \quad(0 \leq j<k<22)$.
(Proof: My calculator told me.) Hence,

$$
\nu\left(A_{1}\right) \geq \frac{1}{3}\left(1-\frac{1}{22}\right)=\frac{7}{22} .
$$

Continuing, let

$$
B_{3}=\mathbb{Z} \backslash \biguplus_{0 \leq k<22}\left(A_{2}+k\right) .
$$

Below is some of B_{3}.

$$
\begin{aligned}
\cdots \quad & ,-1044,-1043,-1042,-689,-688,-687, \\
& -334,-333,-332,21,22,23,354,355,356, \\
& 709,710,711,1064,1065,1066, \cdots
\end{aligned}
$$

Notice that now there is clumping. The translates of B_{3} are not as nice. However, B_{3} itself is the disjoint union of three translates of a set A_{3}, and 333 translates of A_{3} are disjoint. It follows that

$$
\nu\left(A_{1}\right) \leq \frac{1}{3}\left(1-\frac{1}{22}\left(1-\frac{3}{333}\right)\right)=\frac{106}{333} .
$$

On the next iteration we let

$$
B_{4}=\mathbb{Z} \backslash \underset{0 \leq k<333}{\biguplus}\left(A_{3}+k\right),
$$

and find A_{4} for which

$$
B_{4}=\biguplus_{0 \leq j<22}\left(A_{4}+j\right),
$$

where 355 translates of A_{4} are disjoint.

We by now expect to, and do get
$\nu\left(A_{1}\right) \geq \frac{1}{3}\left(1-\frac{1}{22}\left(1-\frac{3}{333}\left(1-\frac{22}{355}\right)\right)\right)=\frac{113}{355}$.

Of course we recognize the continued fraction approximations to $1 / \pi$,

$$
\frac{1}{3}, \frac{7}{22}, \frac{106}{333}, \frac{113}{355}, \ldots
$$

Denoting the above sequence by the familiar

$$
\left\{\frac{p_{n}}{q_{n}}\right\}_{n=1}^{\infty}
$$

we "see" that

$$
\frac{p_{2 n}}{q_{2 n}} \leq \nu\left(A_{1}\right) \leq \frac{p_{2 n-1}}{q_{2 n-1}},
$$

and by a well-known theorem, this implies that

$$
\nu\left(A_{1}\right)=1 / \pi .
$$

Apparently, at the n 'th stage, we have to prove (defining $q_{0}=q_{-1}=1$)

$$
\nu\left(B_{n}\right) \leq \frac{q_{n-2}}{q_{n}} .
$$

That leads to

$$
(-1)^{n} \nu\left(A_{1}\right) \geq(-1)^{n} r_{n},
$$

where

$$
\begin{aligned}
r_{n} & =\frac{1}{q_{1}}\left(1-\frac{1}{q_{2}}\left(1-\frac{q_{1}}{q_{3}}\left(1-\frac{q_{2}}{q_{4}}\left(\cdots\left(1-\frac{q_{n-2}}{q_{n}}\right) \cdots\right)\right)\right.\right. \\
& =\frac{1}{q_{1}}-\frac{1}{q_{1} q_{2}}+\frac{1}{q_{2} q_{3}}-\cdots+(-1)^{n-1} \frac{1}{q_{n-1} q_{n}}
\end{aligned}
$$

It is easy to prove that $r_{n}=p_{n} / q_{n}$ by induction. Obviously, $r_{1}=1 / q_{1}=p_{1} / q_{1}$. Supposing the formula holds up to n, we have

$$
\begin{aligned}
r_{n+1} & =r_{n}+(-1)^{n} \frac{1}{q_{n} q_{n+1}}=\frac{p_{n}}{q_{n}}+(-1)^{n} \frac{1}{q_{n} q_{n+1}} \\
& =\frac{p_{n}}{q_{n}}+\frac{p_{n+1} q_{n}-p_{n} q_{n+1}}{q_{n} q_{n+1}} \\
& =\frac{p_{n+1}}{q_{n+1}}
\end{aligned}
$$

Similar experiments support the conjecture. The addition of an offset has no apparent effect on the estimates. For example, the same gaps appear in the sequence

$$
\{\lfloor n \pi+e\rfloor\}_{n \in \mathbb{Z}},
$$

even though the sets A_{n} are, naturally, different.

Fact? If the numbers $a_{1}, a_{2}, \ldots a_{m}$ are independent, each $a_{i}>1$, and if $b_{1}, b_{2}, \ldots, b_{m}$ are real, then

$$
d\left(\bigcap_{i=1}^{m}\left\{\left\lfloor a_{i} n+b_{i}\right\rfloor\right\}_{n \in \mathbb{Z}}\right)=\prod_{i=1}^{m} \frac{1}{a_{i}} .
$$

This is probably known. (Reference?)

Problem. Is the above intersection an integershading? I have been unable to find experimental evidence of this.

Problem: Does $\operatorname{sh}(A)=s$ imply $d(A)=s$? (I conjecture yes.)

Problem: If the above problem isn't very easy, is it at least true in the case that $s=0$? In fact, does $d(A)=0$ imply $\operatorname{sh}(A)=0$?

Problem: Does every integer-shading contain a nontrivial subshading? Better still, does it contain a subshading of every possible shade? (It suffices to find half-shadings.)

Problem: Is the class of integer shadings an algebra? (I doubt it.)

Problem: Characterise all integer-shadings. That oughta solve the above problems.

Problem: Is it interesting to look at \mathbb{Z}^{k} ?

