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Def: A quasi-arithmetic sequence is a subset

of Z of the form

{bna + bc}n∈Z,

where a > 1 is irrational and b is real.

Def: The density d(A) of a set A ⊂ Z is given

by

d(A) = lim
N→∞

#(A ∩ [−N, N ])

2N

when the limit exists.

Note: The results in Buck’s paper, and many

others deal with measures on the positive in-

tegers only, but can easily be extended to all

of Z. Conversely, our results can be restated

in terms of subsets of N.
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Def: Let D0 be the algebra of subsets of Z
generated by arithmetic sequences and finite

sets.

Fact: Let m be any translation-invariant mea-

sure on Z such that m(Z) = 1, and containining

the class D0 in its domain of definition. Then

m(A) = d(A) ∀A ∈ D0.

(The elements of D0 have the uniqueness prop-

erty relative to the class of all translation-invariant

probability measures on Z.)

Note: Such a measure m is only finitely addi-

tive. Also, m takes only rational values.

Def: For S ⊂ Z, let

m∗(S) = inf{m(A) : S ⊂ A, A ∈ D0}.

Fact: m∗ is a translation-invariant outer mea-

sure on Z, extending m.
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Def: Let Dm be the class of sets S for which

m∗(X) = m∗(X ∩ S) + m∗(X \ S), ∀X ⊂ Z.

Fact: The class Dm is an algebra of sets; m∗ is
a translation-invariant finitely additive measure
when restricted to Dm.

Def: Let µ be this restriction of m∗, i.e.,

µ : Dm → [0,1],

µ(A) = m∗(A), ∀A ∈ Dm.

Fact: The extension is proper, as there are
infinite sets of µ-measure zero in Dm. In fact,
the range of µ is all of [0,1].

Fact: µ(A) = d(A), ∀A ∈ Dm.

Fact: The elements of Dm have the unique-
ness property relative to the class of all translation-
invariant probability measures on Z.
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Fact: There are µ-nonmeasurable subsets of

Z, e.g., any S ⊂ Z for which

#(A∩S) = ∞ = #(A\S) ∀ arithmetic series A.

Thus, all quasi-arithmentic sequences are µ-

nonmeasurable.

Fact: If S = {bna + bc}n∈Z, with a > 1, then

d(S) = 1/a.

Fact: I am annoyed by the conjunction of the

previous two facts.
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Question: Given the previous fact, why even
mess with µ? Isn’t d much better?

Answer: For some things, yes. But the den-
sity d is not a measure on the class of sets with
density. E.g., ∃A, B each having a density but
with A ∩B having undefined density.

Example: Let X be any set with no density.

X = {· · ·•◦••◦◦••••◦◦◦◦••••••••◦◦◦◦◦◦◦◦ · · ·}
Define A and B by letting

A = {an}n∈Z, B = {bn}n∈Z,

where

an = 3n, bn =

{
3n if n ∈ X
3n + 1 if n 6∈ X

Then

d(A) = d(B) = 1/3,

but

A ∩B = 3X,

so A ∩B has no density.
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Fact: There exist translation-invariant prob-
ability measures defined for all subsets of Z.
(This is a consequence of the Hahn-Banach
theorem.)

Def: Let us call such measures “Banach mea-
sures” on Z.

Def: We say that A ⊂ Z has “integer-shade
equal to s” provided that

ν(A) = d(A) = s

for every Banach measure on Z. We then write

sh(A) = s.

Proposition: If a > 1 and

A = {bna + bc}n∈Z,

then

sh(A) = 1/a.

(A minor detail of the proof of this assertion
is left to a collaborator to be named later.)
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Demonstration: Below is some of the set

A = A1 = {bnπc}n∈Z.

· · · ,−16,−13,−10,−7,−4,0,3,6,9,12,15,

18,21,25,28,31,34,37,40,43,47,

50,53,56,59,62,65,69,72,75,78,81, · · ·
It is obvious (and even I can prove) that 3 trans-

lates of

A1, A1 + 1, A1 + 2

are disjoint, since the smallest gap is of length 3.

Letting ν be any Banach measure on Z, it is

clear that

ν(A1) ≤
1

3
.

Let

A2 = Z \
⊎

0≤k<3

(A1 + k).
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Below is some of A2.

· · · ,−45,−23,−1,24,46,68,90,112,134,

156,178,200,222,244,266,288,310,

332,357,379,401,423,445,467, · · ·

This time 22 translates of A2 are disjoint:

(A2 + j) ∩ (A2 + k) = ∅, (0 ≤ j < k < 22).

(Proof: My calculator told me.) Hence,

ν(A1) ≥
1

3

(
1− 1

22

)
=

7

22
.

Continuing, let

B3 = Z \
⊎

0≤k<22

(A2 + k).
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Below is some of B3.

· · · ,−1044,−1043,−1042,−689,−688,−687,

−334,−333,−332,21,22,23,354,355,356,

709,710,711,1064,1065,1066, · · ·

Notice that now there is clumping. The trans-
lates of B3 are not as nice. However, B3 itself
is the disjoint union of three translates of a
set A3, and 333 translates of A3 are disjoint.
It follows that

ν(A1) ≤
1

3

(
1− 1

22

(
1− 3

333

))
=

106

333
.

On the next iteration we let

B4 = Z \
⊎

0≤k<333

(A3 + k),

and find A4 for which

B4 =
⊎

0≤j<22

(A4 + j),

where 355 translates of A4 are disjoint.
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We by now expect to, and do get

ν(A1) ≥
1

3

(
1− 1

22

(
1− 3

333

(
1− 22

355

)))
=

113

355
.

Of course we recognize the continued fraction

approximations to 1/π,

1

3
,

7

22
,
106

333
,
113

355
, · · ·

Denoting the above sequence by the familiar
{

pn

qn

}∞

n=1

we “see” that

p2n

q2n
≤ ν(A1) ≤

p2n−1

q2n−1
,

and by a well-known theorem, this implies that

ν(A1) = 1/π.
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Apparently, at the n’th stage, we have to prove
(defining q0 = q−1 = 1)

ν(Bn) ≤ qn−2

qn
.

That leads to

(−1)n ν(A1) ≥ (−1)n rn,

where

rn =
1

q1

(
1− 1

q2

(
1− q1

q3

(
1− q2

q4

(
· · ·

(
1− qn−2

qn

)
· · ·

))))

=
1

q1
− 1

q1q2
+

1

q2q3
− · · ·+ (−1)n−1 1

qn−1qn

It is easy to prove that rn = pn/qn by induction.
Obviously, r1 = 1/q1 = p1/q1. Supposing the
formula holds up to n, we have

rn+1 = rn + (−1)n 1

qnqn+1
=

pn

qn
+ (−1)n 1

qnqn+1

=
pn

qn
+

pn+1qn − pnqn+1

qnqn+1

=
pn+1

qn+1
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Similar experiments support the conjecture. The

addition of an offset has no apparent effect on

the estimates. For example, the same gaps

appear in the sequence

{bnπ + ec}n∈Z,

even though the sets An are, naturally, differ-

ent.

Fact? If the numbers a1, a2, . . . am are inde-

pendent, each ai > 1, and if b1, b2, . . . , bm are

real, then
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m⋂

i=1

{bain + bic}n∈Z

 =

m∏

i=1

1

ai
.

This is probably known. (Reference?)

Problem. Is the above intersection an integer-

shading? I have been unable to find experimen-

tal evidence of this.
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Problem: Does sh(A) = s imply d(A) = s? (I

conjecture yes.)

Problem: If the above problem isn’t very easy,

is it at least true in the case that s = 0? In

fact, does d(A) = 0 imply sh(A) = 0?

Problem: Does every integer-shading contain

a nontrivial subshading? Better still, does it

contain a subshading of every possible shade?

(It suffices to find half-shadings.)

Problem: Is the class of integer shadings an

algebra? (I doubt it.)

Problem: Characterise all integer-shadings. That

oughta solve the above problems.

Problem: Is it interesting to look at Zk?
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