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In [2, p. 365] it is noted that there is no Hamel basis for the reals over the
rationals that is closed under multiplication. Here we prove the following, more
general

Theorem. Let F be a field and let P be a proper subfield of F. Then the
condition

h1h2 ∈ H whenever h1, h2 ∈ H (1)

is impossible when H is a Hamel basis for F over P.

What follows is given in two short sections, the first of which gives a few
remarks and a bit of context for the result. The reader interested only in the
proof can skip to section 2.

1 Remarks

The most commonly encountered Hamel basis for a field F over a subfield P
occurs when P is the field Q of rationals and F is either the field C of complex
numbers or the field R of reals. We note, however, that Hamel bases for F over
P exist, for instance, if F is C or R, and P is a subfield of F having cardinality
less than the continuum ([3, p. 220]). We also note that the assumptions of our
theorem exclude the situation of F = P, and in particular, that of F = Q; in
these cases one can have the trivial basis H = {1}, which is indeed closed. But
otherwise, we make no assumptions about the sizes of F and P, so F could be,
for example, a field properly containing C. We require only the usual definition
of representation by Hamel bases, namely, that of elements of a vector space (F)
whose nonzero elements are uniquely expressible as finite linear combinations
(over P) of basis elements (from H).

An endomorphism of the field F is any function f : F→ F satisfying

f(x + y) = f(x) + f(y) and f(xy) = f(x)f(y) ∀x, y ∈ F. (2)

An interesting role is played by the function τH : F→ F defined by

τH

(
n∑

i=1

pihi

)
=

n∑

i=1

pi, (3)
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which we note is not identically zero (since τH(h) = 1 for h ∈ H), is P-valued
(and therefore not onto F), and is, as can be easily checked, an endomorphism
of F in the event that (1) holds.

The proof sketched in [2] for the case of our theorem in which F = R and
P = Q is based on the fact that there are no nontrivial endomorphisms on R
([2, p. 356]). That is, there are no functions f : R → R, other than f(x) = x
and f(x) = 0, for which (2) holds when F = R. But if (1) holds, then τH is a
nontrivial endomorphism of R, which is impossible. This proves that a Hamel
basis H for R over Q cannot be closed with respect to multiplication. (The
preceding argument works for any proper subfield P of R in place of Q, though
it wasn’t stated that way in [2].) On a related note, J. Smı́tal proved that a
weaker sort of closure is possible, namely that a Hamel basis H for R over Q
does exist for which hn ∈ H whenever h ∈ H and n is an integer [4].

On the other hand, there do exist nontrivial endomorphisms of the complex
plane, these being functions f : C → C, other than f(z) = z, f(z) = z̄ and
f(z) = 0, satisfying (2). See [1] or [2, p. 358]. This would seem to leave open
the question of the existence of a Hamel basis H for C over Q satisfying (1). It
turns out that the proof for the real case can be easily adapted to answer this
question. This was pointed out by a referee, who noted that the only real-valued
endomorphism of C is the zero function. (To see this, let z ∈ C and let u be
a square root of z. Then if f is any real-valued endomorphism of C, we have
f(z) = f(u2) = (f(u))2 ≥ 0, since f(u) is real. Likewise, −f(z) = f(−z) =
f((iu)2) = (f(iu))2 ≥ 0, so f(z) must be identically zero.) But assuming that
F = C and Q ⊆ P ⊆ R, we see that τH is real-valued and nonzero on C.
If (1) holds, then τH is a real-valued nonzero endomorphism of C. Hence (1) is
impossible when F = C and Q ⊆ P ⊆ R.

The main result in this note is therefore of most interest when P is not a
subset of R or when F differs from R and C.

2 Proof of the result

In what follows, when a fixed nonzero element z of F is such that

z =
n∑

i=1

pihi, (4)

where the hi ∈ H are all distinct and each pi ∈ P\{0}, we occasionally indicate
the uniqueness of such a representation by writing z

H=
∑n

i=1 pihi.
To prove our theorem, we first establish a few useful facts via a sequence of

lemmas.

Lemma 1. Suppose that
n∑

i=1

pihi =
m∑

j=1

rjkj , where the hi and kj are in H and

the pi and rj are in P. Suppose further that the pi are all nonzero and the hi

are all distinct. Then each of the hi must occur among the kj, i.e., for each
i = 1, 2, . . . , n, it must be that hi = kj for some j = 1, 2, . . . ,m.
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Proof. This is clear using the independence (over P) of the elements of H.

It is important to note that the reverse is not true in the above lemma, i.e.,
the kj need not appear among the hi, because when the kj are not assumed
distinct, the various terms rjkj could cancel.

For the remainder of the paper we assume (until we obtain a contradiction)
that H is a Hamel basis for F over P (with the conditions on F and P as already
noted) such that (1) holds.

Lemma 2. If h ∈ H and k ∈ H, then h/k is in H.

Proof. Let
h

k

H=
n∑

i=1

pihi. Then

h =
n∑

i=1

pih
′
i, (5)

where h′i = khi ∈ H for each i. But the h′i are all themselves distinct, for
if h′i = h′j then we have khi = khj , implying hi = hj , which contradicts the
uniqueness of the representation for h/k. But then it must be that n = 1,
because the lefthand side of the representation (5) is certainly unique. This
means that p1 = 1 and h′1 = h, hence h/k = h1 ∈ H.

Letting h be any member of H and letting k = h in Lemma 2 gives us the
following useful fact.

Lemma 3. 1 ∈ H.

Lemma 4. If hn = 1 for h ∈ H and a positive integer n, then h = 1.

Proof. Assume, to the contrary, that h ∈ H and that h 6= 1. We may assume
that n is the smallest positive integer for which hn = 1. Clearly, n > 1, so we
have

0 = hn − 1 = (h− 1)
n−1∑

i=0

hi,

and therefore,

1 =
n−1∑

i=1

−hi.

Since each hi is in H, at least one of the hi must equal 1, by Lemma 1 and
Lemma 3. But this means that hi = 1 for some i strictly between 0 and n,
contradicting the minimality of n.
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Lemma 5. Suppose h and k are in H and that n is a nonzero integer such that
hn = kn. Then h = k.

Proof. The assumptions imply that (h/k)n = 1, so Lemma 2 and Lemma 4 give
us the proof.

We’re now ready to prove the main result.

Proof of Theorem. Let k1 and k2 be distinct members of H and observe that
k1 + k2 6= 0. Writing the Hamel representation for 1/(k1 + k2), i.e.,

1
k1 + k2

H=
n∑

i=1

pihi, (6)

we have

1 =
n∑

i=1

pih
′
i +

n∑

i=1

pih
′′
i ,

where the h′i and h′′i are elements of H with h′i = k1hi and h′′i = k2hi. It is
also clear that h′i 6= h′′i for each i, and the h′i are all distinct, as are the h′′i . By
Lemma 1 and Lemma 3, one of the h′i or h′′i must equal 1, so without loss of
generality (by re-indexing , if necessary) we may let h′1 = 1.

We note that if n = 1, then 1 = p1h
′
1 + p1h

′′
1 . Because h′1 and h′′1 are

distinct with h′1 = 1, it would then follow that the coefficient of h′1 is 1 while
the coefficient of h′′1 is zero. This is clearly nonsensical, so we must have n > 1.

Writing

(1− p1)h′1 +
n∑

i=2

−pih
′
i =

n∑

j=1

pjh
′′
j , (7)

the observations about the distinct elements, along with Lemma 1, show that
each h′i on the left is equal to exactly one h′′j on the right. (Our attention is,
however, first drawn to the fact that the coefficient of h′1 might be zero, but this
cannot be the case. For if so, then the pigeonhole principle puts two distinct h′′j
equal to some h′i, and therefore equal to each other, which is impossible.)

We will repeatedly use the fact that when h′i = h′′j we have

k1

k2
=

hj

hi
.

Now it cannot be that h′1 = h′′1 , so we must have h′1 = h′′j for some j > 1. We
may let (by reindexing the h′′j , if necessary) h′1 = h′′2 . Considering the possibility
that h′2 = h′′1 , we would then have

k1

k2
=

h2

h1
=

h1

h2
.

But this implies that (
k1

k2

)2

=
h2

h1

h1

h2
= 1,
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so k2
1 = k2

2. But then k1 = k2 by Lemma 5. This is impossible, as is the
remaining possibility that h′2 = h′′2 . We therefore must have n > 2.

This process continues and shows that no finite sum such as (7) is possible.
The proof is by induction. If (7) is impossible for n = 1, 2, . . . , N (which we
have shown explicitly for N = 1, 2), it must be that n > N , so we relabel when
appropriate and necessary to obtain the pairings

h′1 = h′′2 , h′2 = h′′3 , . . . , h′N = h′′N+1.

If we now consider the possibility that h′N+1 = h′′1 , we obtain

k1

k2
=

h2

h1
=

h3

h2
= · · · = hN+1

hN
=

h1

hN+1
.

It follows that
(

k1

k2

)N+1

=
(

h2

h1

)(
h3

h2

)
· · ·

(
hN+1

hN

)
·
(

h1

hN+1

)
= 1.

But then kN+1
1 = kN+1

2 , so again by Lemma 5, we have the contradiction
k1 = k2.

This shows that it is impossible that h′N+1 = h′′1 and so it must be that
h′N+1 = h′′i for some i > N + 1 (otherwise h′N+1 = h′′N+1). But this means
n > N + 1 and shows that (7) is impossible for n = N + 1, and inductively, for
all n.

We have now proved that no representation of the form (6) is possible, and
hence H cannot span F over P. Thus H cannot be a Hamel basis for F over
P.
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