No nontrivial Hamel basis is closed under multiplication
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Summary: If H is a Hamel basis for a field F over a proper subfield of F, then H
cannot be closed under the taking of products.
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In [2, p. 365] it is noted that there is no Hamel basis for the reals over the
rationals that is closed under multiplication. Here we prove the following, more
general

Theorem. Let F be a field and let P be a proper subfield of F. Then the
condition
hiho € H whenever hi,hs € H (1)

1s impossible when H is a Hamel basis for F over P.

What follows is given in two short sections, the first of which gives a few
remarks and a bit of context for the result. The reader interested only in the
proof can skip to section 2.

1 Remarks

The most commonly encountered Hamel basis for a field F over a subfield P
occurs when P is the field Q of rationals and F is either the field C of complex
numbers or the field R of reals. We note, however, that Hamel bases for F over
P exist, for instance, if F is C or R, and P is a subfield of F having cardinality
less than the continuum ([3, p. 220]). We also note that the assumptions of our
theorem exclude the situation of F = P, and in particular, that of F = Q; in
these cases one can have the trivial basis H = {1}, which is indeed closed. But
otherwise, we make no assumptions about the sizes of F and P, so F could be,
for example, a field properly containing C. We require only the usual definition
of representation by Hamel bases, namely, that of elements of a vector space (F)
whose nonzero elements are uniquely expressible as finite linear combinations
(over P) of basis elements (from H).
An endomorphism of the field F is any function f : F — F satisfying

flx+y) = fx)+ fly) and f(xy) = f(2)f(y) Vo,y €F. (2)

An interesting role is played by the function 75 : F — F defined by

TH <Zpihi> = Zpi, (3)



which we note is not identically zero (since 7y (h) = 1 for h € H), is P-valued
(and therefore not onto F), and is, as can be easily checked, an endomorphism
of F in the event that (1) holds.

The proof sketched in [2] for the case of our theorem in which F = R and
P = Q is based on the fact that there are no nontrivial endomorphisms on R
([2, p. 356]). That is, there are no functions f : R — R, other than f(z) = z
and f(z) = 0, for which (2) holds when F = R. But if (1) holds, then 74 is a
nontrivial endomorphism of R, which is impossible. This proves that a Hamel
basis H for R over Q cannot be closed with respect to multiplication. (The
preceding argument works for any proper subfield P of R in place of Q, though
it wasn’t stated that way in [2].) On a related note, J. Smital proved that a
weaker sort of closure is possible, namely that a Hamel basis H for R over Q
does exist for which h™ € H whenever h € H and n is an integer [4].

On the other hand, there do exist nontrivial endomorphisms of the complex
plane, these being functions f : C — C, other than f(z) = 2, f(z) = Z and
f(z) = 0, satisfying (2). See [1] or [2, p. 358]. This would seem to leave open
the question of the existence of a Hamel basis H for C over Q satisfying (1). It
turns out that the proof for the real case can be easily adapted to answer this
question. This was pointed out by a referee, who noted that the only real-valued
endomorphism of C is the zero function. (To see this, let z € C and let u be
a square root of z. Then if f is any real-valued endomorphism of C, we have
f(z) = f(u?) = (f(u))? > 0, since f(u) is real. Likewise, —f(z) = f(—2) =
f((iw)?) = (f(iu))? > 0, so f(z) must be identically zero.) But assuming that
F=Cand Q C P C R, we see that 7 is real-valued and nonzero on C.
If (1) holds, then 7 is a real-valued nonzero endomorphism of C. Hence (1) is
impossible when F = C and Q C P C R.

The main result in this note is therefore of most interest when P is not a
subset of R or when F differs from R and C.

2 Proof of the result

In what follows, when a fixed nonzero element z of F is such that

i=1

where the h; € H are all distinct and each p; € P\ {0}, we occasionally indicate

the uniqueness of such a representation by writing z a S pil.
To prove our theorem, we first establish a few useful facts via a sequence of
lemmas.

n m
Lemma 1. Suppose that Zpihi = Z rik;, where the h; and k; are in H and
i=1 j=1
the p; and r; are in P. Suppose further that the p; are all nonzero and the h;
are all distinct. Then each of the h; must occur among the k;, i.e., for each
i=1,2,...,n, it must be that h; = k; for some j =1,2,...,m.



Proof. This is clear using the independence (over P) of the elements of H. O

It is important to note that the reverse is not true in the above lemma, i.e.,
the k; need not appear among the h;, because when the k; are not assumed
distinct, the various terms r;k; could cancel.

For the remainder of the paper we assume (until we obtain a contradiction)
that H is a Hamel basis for F over P (with the conditions on F and P as already
noted) such that (1) holds.

Lemma 2. Ifh € H and k € H, then h/k is in H.

h o
Proof. Let = ;pzhz Then

b= o)
=1

where h; = kh; € H for each i¢. But the h] are all themselves distinct, for
if h; = h’; then we have kh; = kh;, implying h; = h;, which contradicts the
uniqueness of the representation for h/k. But then it must be that n = 1,

because the lefthand side of the representation (5) is certainly unique. This
means that py = 1 and b} = h, hence h/k = hy € H. O

Letting h be any member of H and letting £ = h in Lemma 2 gives us the
following useful fact.

Lemma 3. 1 € H.

Lemma 4. If " =1 for h € H and a positive integer n, then h = 1.

Proof. Assume, to the contrary, that h € H and that h # 1. We may assume
that n is the smallest positive integer for which A" = 1. Clearly, n > 1, so we
have

n—1
O=h"—1=(h-1)) I,
i=0
and therefore,
n—1
1= —h'.
i=1

Since each h' is in H, at least one of the h* must equal 1, by Lemma 1 and
Lemma 3. But this means that h* = 1 for some i strictly between 0 and n,
contradicting the minimality of n. O



Lemma 5. Suppose h and k are in H and that n is a nonzero integer such that
h™ = k™. Then h = k.

Proof. The assumptions imply that (h/k)" = 1, so Lemma 2 and Lemma 4 give
us the proof. O

We’re now ready to prove the main result.

Proof of Theorem. Let ki and ko be distinct members of H and observe that
k1 + ko # 0. Writing the Hamel representation for 1/(k1 + k2), i.e.,

1 H i
= il 6
P ;p (6)

n n
1= "phi+ > pihf,
=1 =1

where the h} and h! are elements of H with h, = kih; and b = koh;. It is
also clear that h/ # h} for each i, and the A are all distinct, as are the h. By
Lemma 1 and Lemma 3, one of the h; or hJ must equal 1, so without loss of
generality (by re-indexing , if necessary) we may let b} = 1.

We note that if n = 1, then 1 = p1h] + p1hf. Because h} and h{ are
distinct with hf = 1, it would then follow that the coefficient of h} is 1 while
the coefficient of hY is zero. This is clearly nonsensical, so we must have n > 1.

Writing

we have

(L—pO)s + > —pihl = pih, (7)
i=2 j=1

the observations about the distinct elements, along with Lemma 1, show that
each h} on the left is equal to exactly one h} on the right. (Our attention i,
however, first drawn to the fact that the coefficient of A} might be zero, but this
cannot be the case. For if so, then the pigeonhole principle puts two distinct h;"
equal to some hf, and therefore equal to each other, which is impossible.)
We will repeatedly use the fact that when h} = hY/ we have
ki hj

ky Ry
Now it cannot be that h = hY, so we must have hj = h’ for some j > 1. We
may let (by reindexing the h7, if necessary) hy = hy. Considering the possibility
that hy = hY, we would then have
ki hy M
ky hi  hy'

ki\* _hahy _
ko _h1h2_ ’

But this implies that



so k¥ = k3. But then k; = ko by Lemma 5. This is impossible, as is the
remaining possibility that b5 = hY. We therefore must have n > 2.

This process continues and shows that no finite sum such as (7) is possible.
The proof is by induction. If (7) is impossible for n = 1,2,..., N (which we
have shown explicitly for N = 1,2), it must be that n > N, so we relabel when
appropriate and necessary to obtain the pairings

hy="hy, hy=hy, ..., hiy=h%,.
If we now consider the possibility that hy, = hY, we obtain

ko he s _han M
kg h1 hQ hN hN+1.

It follows that

() -G G) - () () -

kg h1 hQ hN hN+1

But then k™' = EYT! so again by Lemma 5, we have the contradiction
k1 = ko.

This shows that it is impossible that hy,, = h{ and so it must be that
Pyy1 = hi for some i > N + 1 (otherwise Ay, = hiy,,). But this means
n > N + 1 and shows that (7) is impossible for n = N + 1, and inductively, for
all n.

We have now proved that no representation of the form (6) is possible, and
hence H cannot span F over P. Thus H cannot be a Hamel basis for F over
P. O
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