No nontrivial Hamel basis is closed under multiplication

RICHARD D. MABRY

Summary: If *H* is a Hamel basis for a field \mathbb{F} over a proper subfield of \mathbb{F} , then *H* cannot be closed under the taking of products.

Mathematics Subject Classification (2000): 12D99, 08A35, 39B32

In [2, p. 365] it is noted that there is no Hamel basis for the reals over the rationals that is closed under multiplication. Here we prove the following, more general

Theorem. Let \mathbb{F} be a field and let \mathbb{P} be a proper subfield of \mathbb{F} . Then the condition

$$h_1h_2 \in H \text{ whenever } h_1, h_2 \in H$$
 (1)

is impossible when H is a Hamel basis for \mathbb{F} over \mathbb{P} .

What follows is given in two short sections, the first of which gives a few remarks and a bit of context for the result. The reader interested only in the proof can skip to section 2.

1 Remarks

The most commonly encountered Hamel basis for a field \mathbb{F} over a subfield \mathbb{P} occurs when \mathbb{P} is the field \mathbb{Q} of rationals and \mathbb{F} is either the field \mathbb{C} of complex numbers or the field \mathbb{R} of reals. We note, however, that Hamel bases for \mathbb{F} over \mathbb{P} exist, for instance, if \mathbb{F} is \mathbb{C} or \mathbb{R} , and \mathbb{P} is a subfield of \mathbb{F} having cardinality less than the continuum ([3, p. 220]). We also note that the assumptions of our theorem exclude the situation of $\mathbb{F} = \mathbb{P}$, and in particular, that of $\mathbb{F} = \mathbb{Q}$; in these cases one can have the trivial basis $H = \{1\}$, which is indeed closed. But otherwise, we make no assumptions about the sizes of \mathbb{F} and \mathbb{P} , so \mathbb{F} could be, for example, a field properly containing \mathbb{C} . We require only the usual definition of representation by Hamel bases, namely, that of elements of a vector space (\mathbb{F}) whose nonzero elements are uniquely expressible as finite linear combinations (over \mathbb{P}) of basis elements (from H).

An endomorphism of the field \mathbb{F} is any function $f: \mathbb{F} \to \mathbb{F}$ satisfying

$$f(x+y) = f(x) + f(y) \text{ and } f(xy) = f(x)f(y) \quad \forall x, y \in \mathbb{F}.$$
 (2)

An interesting role is played by the function $\tau_H : \mathbb{F} \to \mathbb{F}$ defined by

$$\tau_H\left(\sum_{i=1}^n p_i h_i\right) = \sum_{i=1}^n p_i,\tag{3}$$

which we note is not identically zero (since $\tau_H(h) = 1$ for $h \in H$), is \mathbb{P} -valued (and therefore not onto \mathbb{F}), and is, as can be easily checked, an endomorphism of \mathbb{F} in the event that (1) holds.

The proof sketched in [2] for the case of our theorem in which $\mathbb{F} = \mathbb{R}$ and $\mathbb{P} = \mathbb{Q}$ is based on the fact that there are no nontrivial endomorphisms on \mathbb{R} ([2, p. 356]). That is, there are no functions $f : \mathbb{R} \to \mathbb{R}$, other than f(x) = x and f(x) = 0, for which (2) holds when $\mathbb{F} = \mathbb{R}$. But if (1) holds, then τ_H is a nontrivial endomorphism of \mathbb{R} , which is impossible. This proves that a Hamel basis H for \mathbb{R} over \mathbb{Q} cannot be closed with respect to multiplication. (The preceding argument works for any proper subfield \mathbb{P} of \mathbb{R} in place of \mathbb{Q} , though it wasn't stated that way in [2].) On a related note, J. Smítal proved that a weaker sort of closure is possible, namely that a Hamel basis H for \mathbb{R} over \mathbb{Q} does exist for which $h^n \in H$ whenever $h \in H$ and n is an integer [4].

On the other hand, there do exist nontrivial endomorphisms of the complex plane, these being functions $f : \mathbb{C} \to \mathbb{C}$, other than f(z) = z, $f(z) = \overline{z}$ and f(z) = 0, satisfying (2). See [1] or [2, p. 358]. This would seem to leave open the question of the existence of a Hamel basis H for \mathbb{C} over \mathbb{Q} satisfying (1). It turns out that the proof for the real case can be easily adapted to answer this question. This was pointed out by a referee, who noted that the only real-valued endomorphism of \mathbb{C} is the zero function. (To see this, let $z \in \mathbb{C}$ and let u be a square root of z. Then if f is any real-valued endomorphism of \mathbb{C} , we have $f(z) = f(u^2) = (f(u))^2 \ge 0$, since f(u) is real. Likewise, -f(z) = f(-z) = $f((iu)^2) = (f(iu))^2 \ge 0$, so f(z) must be identically zero.) But assuming that $\mathbb{F} = \mathbb{C}$ and $\mathbb{Q} \subseteq \mathbb{P} \subseteq \mathbb{R}$, we see that τ_H is real-valued and nonzero on \mathbb{C} . If (1) holds, then τ_H is a real-valued nonzero endomorphism of \mathbb{C} . Hence (1) is impossible when $\mathbb{F} = \mathbb{C}$ and $\mathbb{Q} \subseteq \mathbb{P} \subseteq \mathbb{R}$.

The main result in this note is therefore of most interest when \mathbb{P} is not a subset of \mathbb{R} or when \mathbb{F} differs from \mathbb{R} and \mathbb{C} .

2 Proof of the result

In what follows, when a fixed nonzero element z of \mathbb{F} is such that

$$z = \sum_{i=1}^{n} p_i h_i, \tag{4}$$

where the $h_i \in H$ are all distinct and each $p_i \in \mathbb{P} \setminus \{0\}$, we occasionally indicate the uniqueness of such a representation by writing $z \stackrel{H}{=} \sum_{i=1}^{n} p_i h_i$.

To prove our theorem, we first establish a few useful facts via a sequence of lemmas.

Lemma 1. Suppose that $\sum_{i=1}^{n} p_i h_i = \sum_{j=1}^{m} r_j k_j$, where the h_i and k_j are in H and the p_i and r_j are in \mathbb{P} . Suppose further that the p_i are all nonzero and the h_i

the p_i and r_j are in \mathbb{P} . Suppose further that the p_i are all nonzero and the h_i are all distinct. Then each of the h_i must occur among the k_j , i.e., for each i = 1, 2, ..., n, it must be that $h_i = k_j$ for some j = 1, 2, ..., m.

Proof. This is clear using the independence (over \mathbb{P}) of the elements of H. \Box

It is important to note that the reverse is not true in the above lemma, i.e., the k_j need not appear among the h_i , because when the k_j are not assumed distinct, the various terms r_jk_j could cancel.

For the remainder of the paper we assume (until we obtain a contradiction) that H is a Hamel basis for \mathbb{F} over \mathbb{P} (with the conditions on \mathbb{F} and \mathbb{P} as already noted) such that (1) holds.

Lemma 2. If $h \in H$ and $k \in H$, then h/k is in H.

Proof. Let $\frac{h}{k} \stackrel{H}{=} \sum_{i=1}^{n} p_i h_i$. Then

$$h = \sum_{i=1}^{n} p_i h'_i,\tag{5}$$

where $h'_i = kh_i \in H$ for each *i*. But the h'_i are all themselves distinct, for if $h'_i = h'_j$ then we have $kh_i = kh_j$, implying $h_i = h_j$, which contradicts the uniqueness of the representation for h/k. But then it must be that n = 1, because the lefthand side of the representation (5) is certainly unique. This means that $p_1 = 1$ and $h'_1 = h$, hence $h/k = h_1 \in H$.

Letting h be any member of H and letting k = h in Lemma 2 gives us the following useful fact.

Lemma 3. $1 \in H$.

Lemma 4. If $h^n = 1$ for $h \in H$ and a positive integer n, then h = 1.

Proof. Assume, to the contrary, that $h \in H$ and that $h \neq 1$. We may assume that n is the smallest positive integer for which $h^n = 1$. Clearly, n > 1, so we have

$$0 = h^{n} - 1 = (h - 1) \sum_{i=0}^{n-1} h^{i},$$

and therefore,

$$1 = \sum_{i=1}^{n-1} -h^i.$$

Since each h^i is in H, at least one of the h^i must equal 1, by Lemma 1 and Lemma 3. But this means that $h^i = 1$ for some *i* strictly between 0 and *n*, contradicting the minimality of *n*.

Lemma 5. Suppose h and k are in H and that n is a nonzero integer such that $h^n = k^n$. Then h = k.

Proof. The assumptions imply that $(h/k)^n = 1$, so Lemma 2 and Lemma 4 give us the proof.

We're now ready to prove the main result.

Proof of Theorem. Let k_1 and k_2 be distinct members of H and observe that $k_1 + k_2 \neq 0$. Writing the Hamel representation for $1/(k_1 + k_2)$, i.e.,

$$\frac{1}{k_1 + k_2} \stackrel{H}{=} \sum_{i=1}^{n} p_i h_i, \tag{6}$$

we have

$$1 = \sum_{i=1}^{n} p_i h'_i + \sum_{i=1}^{n} p_i h''_i,$$

where the h'_i and h''_i are elements of H with $h'_i = k_1 h_i$ and $h''_i = k_2 h_i$. It is also clear that $h'_i \neq h''_i$ for each i, and the h'_i are all distinct, as are the h''_i . By Lemma 1 and Lemma 3, one of the h'_i or h''_i must equal 1, so without loss of generality (by re-indexing, if necessary) we may let $h'_1 = 1$.

We note that if n = 1, then $1 = p_1h'_1 + p_1h''_1$. Because h'_1 and h''_1 are distinct with $h'_1 = 1$, it would then follow that the coefficient of h'_1 is 1 while the coefficient of h''_1 is zero. This is clearly nonsensical, so we must have n > 1. Writing

ung

$$(1-p_1)h'_1 + \sum_{i=2}^n -p_ih'_i = \sum_{j=1}^n p_jh''_j,$$
(7)

the observations about the distinct elements, along with Lemma 1, show that each h'_i on the left is equal to exactly one h''_j on the right. (Our attention is, however, first drawn to the fact that the coefficient of h'_1 might be zero, but this cannot be the case. For if so, then the pigeonhole principle puts two distinct h''_j equal to some h'_i , and therefore equal to each other, which is impossible.)

We will repeatedly use the fact that when $h'_i = h''_j$ we have

$$\frac{k_1}{k_2} = \frac{h_j}{h_i}.$$

Now it cannot be that $h'_1 = h''_1$, so we must have $h'_1 = h''_j$ for some j > 1. We may let (by reindexing the h''_j , if necessary) $h'_1 = h''_2$. Considering the possibility that $h'_2 = h''_1$, we would then have

$$\frac{k_1}{k_2} = \frac{h_2}{h_1} = \frac{h_1}{h_2}.$$

But this implies that

$$\left(\frac{k_1}{k_2}\right)^2 = \frac{h_2}{h_1}\frac{h_1}{h_2} = 1$$

so $k_1^2 = k_2^2$. But then $k_1 = k_2$ by Lemma 5. This is impossible, as is the remaining possibility that $h'_2 = h''_2$. We therefore must have n > 2.

This process continues and shows that no finite sum such as (7) is possible. The proof is by induction. If (7) is impossible for n = 1, 2, ..., N (which we have shown explicitly for N = 1, 2), it must be that n > N, so we relabel when appropriate and necessary to obtain the pairings

$$h'_1 = h''_2, \quad h'_2 = h''_3, \quad \dots, \quad h'_N = h''_{N+1}.$$

If we now consider the possibility that $h'_{N+1} = h''_1$, we obtain

$$\frac{k_1}{k_2} = \frac{h_2}{h_1} = \frac{h_3}{h_2} = \dots = \frac{h_{N+1}}{h_N} = \frac{h_1}{h_{N+1}}.$$

It follows that

$$\left(\frac{k_1}{k_2}\right)^{N+1} = \left(\frac{h_2}{h_1}\right) \left(\frac{h_3}{h_2}\right) \cdots \left(\frac{h_{N+1}}{h_N}\right) \cdot \left(\frac{h_1}{h_{N+1}}\right) = 1.$$

But then $k_1^{N+1} = k_2^{N+1}$, so again by Lemma 5, we have the contradiction $k_1 = k_2$.

This shows that it is impossible that $h'_{N+1} = h''_1$ and so it must be that $h'_{N+1} = h''_i$ for some i > N + 1 (otherwise $h'_{N+1} = h''_{N+1}$). But this means n > N + 1 and shows that (7) is impossible for n = N + 1, and inductively, for all n.

We have now proved that no representation of the form (6) is possible, and hence H cannot span \mathbb{F} over \mathbb{P} . Thus H cannot be a Hamel basis for \mathbb{F} over \mathbb{P} .

References

- KESTELMAN, H., Automorphisms of the field of complex numbers, Proc. London Math. Soc., II. Ser., 53 (1951), 1-12.
- [2] M. KUCZMA, An introduction to the theory of functional equations and inequalities, Panstwowe Wydawnictwo Naukowe, Warszawa, 1985.
- [3] J. C. MORGAN II, Point Set Theory, Marcel Dekker, New York, 1989.
- [4] SMÍTAL, J., On a problem of Aczél and Erdős concerning Hamel bases, Aequationes Math., 28 (1985), no. 1-2, 135-137.

Department of Mathematics Louisiana State University in Shreveport Shreveport, LA 71115-2399 USA e-mail: rmabry@pilot.lsus.edu