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PROBLEMS

LOREN C. LARSON, editor
St. Olaf College

GEORGE GILBERT, associate editor

Texas Christian University

Proposals

To be considered for publication, solutions
should be received by March 1, 1993.

1403. Proposed by Richard Friedlander, University of Missouri—St. Louis, and Stan
Wagon, Macalester College, Saint Paul, Minnesota.

Simpson’s aggregation paradox admits a simple baseball interpretation. It is possi-
ble for there to be two batters, Veteran and Youngster, and two pitchers, Righty and
Lefty, such that Veteran’s batting average against Righty is better than Youngster's
average against Righty, and Veteran’s batting average against Lefty is better than
Youngster’s average against Lefty, but yet Youngster's combined batting average
against the two pitchers is better than Veteran’s. Question: Can there be a double
Simpson’s paradox? That is, is it possible to have the situation just described and, at
the same time, have it be the case that Righty is a better pitcher than Lefty against
either batter, but Lefty is a better pitcher than Righty against both batters combined?

1404. Proposed by Hillel Gauchman and Ira Rosenholtz, East Illinois University,
Charleston, Illinois.

Find the smallest prime which is not the difference (in some order) of a power of 2
and a power of 3.

1405. Proposed by Hiiseyin Demin, Middle East Technical University, Ankara,
Turkey.

Two circles inscribed in distinct angles of a triangle are isogonally related if the
tangents from the third vertex not coinciding with the sides are symmetric with
respect to the bisector of the third angle. Given three circles inscribed in distinct
angles of a triangle, prove that if any two of the three pairs of circles are isogonally
related then so is the third pair.

ASSISTANT EDITORS: Crirron Corzat, Bruce Hanson, Riciarp KLEBER, Kay Smitii, and TiiEODORE
Vessky, St. Olaf College and Mark KrusemEYER, Carleton College. We invite readers to submit problems
believed to be new and appealing to students and teachers of advanced undergraduate mathematics.
Proposals should be accompanied by solutions, if at all possible, and by any other information that will assist
the editors and referees. A problem submitted as a Quickie should have an unexpected, succinct solution. An
asterisk (*) next to a problem number indicates that neither the proposer nor the editors supplied a solution.

Solutions should be written in a style appropriate for Mathematics Magazine. Each solution should begin
on a separate sheet containing the solver’s name and full address.

Solutions and new proposals should be mailed in duplicate to Loren Larson, Department of Mathematics,
St. Olaf College, 1520 St. Olaf Ave., Northfield, MN 55057-1098 or mailed electronically via fax: (507)
663-3549 or e-mail: larson@stolaf.edu.
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1406. Proposed by Detlef Laugwitz, Fachbereich Mathematik Technische Hochschule,
Darmstadt, Germany.

Define a sequence (a,), . by
a,=V3, a,=a,.,(3-d2,,), O0<a,<a;, forn=12,3,....

Show that lim, _, , 3"a,, exists and find its value.

1407. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada.

Determine the maximum value of the sum
PP ... P olal — allyel — o
x] +x§ + F+xl —xfxg —xdxg xlxy,

where p, q,r are given numbers with p>¢>r>0and 0 <x, <1 for all i.

Quickies

Answers to the Quickies are on page 272.

Q794. Proposed by Murray S. Klamkin, University of Alberta, Edmonton, Alberta,
Canada.

The general problem of Appolonius is to draw a circle tangent to three given
circles. Special cases ensue when all or some of the circles are replaced by points or
lines. Solve the problem in the case of two points O, Q, and a circle C, where O is
the center of C and Q is an interior point of C.

Q795. Proposed by Norman Schaumberger, Douglaston, New York.
Find a solution in positive integers of

a*+b"+ % =d'.

Q796. Proposed by Tadhg Creedon (student) and Desmond MacHale, University
College, Cork, Ireland.

Let G ={a,, a,,...,a,} be a finite group with binary operation #, Define an n X n
matrix M =(m;) by m;;=1if a,*a;=a;*a; and m;; = 0 otherwise. Show that M
is invertible if and only if n = 1.

Solutions

Triangular numbers October 1991

1378. Proposed by Stephen G. Penrice, Arizona State University, Tempe, Arizona.
Let (i); denote the falling product i(i —1)--- (i —j+ 1) and let (i), = 1. Show
that for all positive integers n and k

(n+k)k+1 n —i
Lt T (s k= )i

is a triangular number.



VOL. 65, NO. 4, OCTOBER 1992 267

I. Solution by R. S. Tiberio, Natick, Maine.
Writing (i); as il /(i — j)!, we may write the given expression as

Mgl

1 n—1

Now using the standard additive property of binomial coefficients, we can write this

%(n;ll-k)i((n+k—z+1)_(.n+rl:—i)),

i=1

which telescopes to

a triangular number.

IL. Solution by Reiner Martin (student), University of California at Los Angeles, Los
Angeles, California.
We claim that

k
n Y (k)isi(n+k—i)_;=(n+k)—

i=1

The right side gives the number of ways of choosing k elements ordered and without
repetition from {1,2,...,n + k}, choosing at least one element from {1,2,...,n}. For
such a choice, let the i-th element be the first one chosen from {1, 2, ..., n}. There are
(k),_, possibilities choosing the first i — 1 elements from {n +1,n+2,...,n +k},
and n possibilities to choose the ith element from {1,2,...,n}, and (n +k —i),_;
possibilities to choose the last k —i elements from the remaining ones. This proves
our identity.
Using (n + k), ,, =n(n +k),, we now get

(n+k)ri, (n+k)x((n+k)
W,‘_Y(")’ k=)= g (S 1)

41

which is a triangular number.

Also solved by Michael H. Andreoli, Seung-Jin Bang (Korea), Harvey L. Berger, ]. C. Binz (Switzer-
land), William Chen and Edward T. H. Wang, Con Amore Problem Group (Denmark), Robert L. Doucette,
Arne Fransén (Sweden), Russell Jay Hendel, Albert Kurz (student), Carl Libis, Norman Lindquist, Jack
McCown, James L. Parish, Volkhard Schindler (Germany), Heinz-Jiirgen Seiffert (Germany), John S.
Sumner, Michael Vowe (Switzerland), Robert J. Wagner, Chris Wildhagen (The Netherlands), David Zhu
(student), and the proposer.
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Self-seeking operations October 1991

1379. Proposed by John O. Kiltinen, Northern Michigan University, Marquette,
Michigan.

Call an operation * on a nonempty set A self-seeking if every permutation of A is
an automorphism from (A, *) to (A, *). Such operations have no isomorphic copies
on the set other than themselves. Describe all the self-seeking operations, if any,
on A.

Solution by Fred Dodd, University of South Alabama, Mobile, Alabama.

The operations #, and #*, given by x #;y =x and x *,y =y for each x,y € A are
self-seeking since o(x *,y) = o(x) = o(x)*,0(y) and o(x*,y) = o(y) =
a(x)*,a(y) for each permutation o. We show that if |A| # 2,3 these exhaust the
self-seeking operations; and for |A| = 3, |A| = 2, there are three and four self-seeking
operations respectively. The case |A| =1 is trivial and so we assume that |[A] > 2.

Lemma. If a,b are two distinct elements of A and * is self-seeking then * is
completely determined by the values a*a and a*b. Moreover, if |A| > 2 then
axa=a;and if |A| >3 then axb=a or axb=D>b.

Proof of Lemma. If x and y are any two distinct elements of A there is a
permutation 7 with 7(a) =x and 7(b) =y. Thus, x * x = 7(a)* 7(a) = 7(a * @) and
x*y =1(a)*7(b) = 7(a*b). If |A| >2 there is a permutation ¢ such
that ¢(a) = e and ¢(a*a) #* a*xa when axa # a. Thus, since
a*a=¢(a)* p(a) = ¢(a * a) it follows that a * a = a when |A| > 2. If |A| > 3 there
is a permutation 6 such that 8(a) =a, 6(b) =b; and 6(a* b)+*a+b when a*b &
{a, b}. Thus, since a * b = 0(a)* 0(b) = 0(a * b) we must have axb=aor a*xb=D>
when |A| > 3.

It is immediate from the lemma that *, and *, are the only self-seeking
operations when |A| # 2,3. If A ={a,b, ¢}, the lemma says there are at most three
self-seeking operations. It is easy to verify that the operation * given by x *x =,
x *y =2z where {x,y,z} ={a, b, c} is a third self-seeking operation. Finally, if A =
{a, b}, the lemma says there are at most four self-seeking operations. It is clear that
the two operations given by

XX =Y, A FY=x

and

X FX=Y, x* Y=y
where {x,y} = {a, b} give third and fourth self-seeking operations.

Also solved by S. F. Barger, David Callan, Con Amore Problem Group (Denmark), Robert L. Doucette,
Furman University Problem Solving Group, William E. Gould, Colonel Johnson Jr., Emil F. Knapp, Dean
Larson, Reiner Martin (student), Jean-Marie Monier (France), Raphael S. Ryger, John S. Sumner, Trinity
University Problem Group, C. Wildhagen, and the proposer.

Lower bound for positive root October 1991

1380. Proposed by Thoddi C. T. Kotiah, Utica College of Syracuse University, Utica,
New York.

Let P(x)=x"—a;x" ' —ayx""2— -+ —a,, where the a; are nonnegative real
numbers, not all zero. Let s = L!_,a; and v = £}_,ia;. Prove that a lower bound for
the positive real zero of P(x)is s*/°.
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L. Solution by the Con Amore Problem Group, Royal Danish School of Educational
Studies, Copenhagen, Denmark.
We have to prove that if ¢ > 0, and

(1/6)" —ay(1/1)" " —ay(1/t)" "= -+ —a, =0,
or
ajt+a,t>+ - +at"=1, (D)

then s*/* < 1/t, or,

st < 1. (2)
So assume (1), and for i =1,2, ..., n define
a,=a,/s. (3)
Then
;20(i=1,2,...,n), and ) a;=1. (4)

i—1
Now (2) may be written as
(st)"(st%)™ - (st " < 1,
or (taking the sth root on both sides, and using (3)),
(st)“(st)™ - (st < 1,
or again, as
a)(—log(st)) +ay(—log(st?)) + -+ +a,(—log(st")) = 0. (5)

Now —log x is a convex function so by Jensen’s inequality and (4), the left side of (5)
is at least

—log(a;st +ayst® + - +a,st"),
or (see (3)),
—log(ayt +ayt>+ -+ +a,t"),
which is 0 (see (1)), so (5) is true and then so is (2).

I1. Solution by Reiner Martin (student), University of California at Los Angeles, Los
Angeles, California.
By an obvious induction on n, using the derivative, we see that P has exactly one
positive real zero, and P’ > 0 at this point. So it is enough to show that P(s*/?) <0.
By the weighted arithmetic mean—geometric mean inequality, we have

Zz;lais(n—i)s/v

n 1/s
. < (nsai(n—i)s/v) =S):?=la,-(n—i)/u=Sns/t;—l.

i=1

Thus

n
P(Ss/v) =Sns/u _ Z ais(n—i)s/uz 0.
i=1
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Also solved by Arnold Adelberg and Eugene A. Herman, Robert A. Agnew, Paul Bracken (Canada),
Robert L. Doucette, F. ]. Flanigan, G. Ladas, F. C. Rembis, Heinz-Jiirgen Seiffert (Germany, two
solutions), John S. Sumner, and the proposer.

Ladas cites a paper by David H. Anderson, “Estimation and Computation of the Growth Rate in Leslie’s
and Lotka’s Population Models,” Biometrics 31, September 1975, pp. 701-718, which contains this, and
several other bounds, for the unique positive root of this polynomial.

Diophantine equation October 1991

1381. Proposed by Mihdly Bencze, Brasov, Romania.
Find all integer solutions of the following (n and k are positive integers).
a (x+y)ntt=x2n 4 y2"
b*. (x, +xg+ o +x )k TR = yhn g phny oo ppkn

L. Solution to (a) by Keith Neu (student), Louisiana State University in Shreveport,
Shreveport, Louisiana.
We will show that the solutions to (a) are x =y =0, or,

x=(b+1)((b+1)*" +b>"),
y=—b((b+1)""+b*"),

where b is any integer.

The binomial theorem implies that x and y must be of opposite signs, unless both
are zero. Since the equation is symmetric in x and y, without loss of generality, we
may assume x > 0 and y <0. Let z = —y, so that the equation becomes (x — z)*"*!
=x2"+ 22" with x > 0 and z > 0. The right side of this equation being nonnegative
implies x >z > 0. Clearly x =z = 0 is a solution, and if x =z, then both must equal
0. So assume that x >z > 0.

Let x =ag, z=Dbg, where gcd(a,b) =1. We may assume that g> 0, and the
above assumptions on x and z imply that @ >b > 0. Inserting x = (a¢/b)z in our
equation and cancelling a factor of 22" reveals

b(a® +b>)
A=
(a—Db)™

Since a and b are relatively prime, so are a —b and b, as well as (a — b)***! and b.
Thus, for z to be an integer, (a —b)*"*! divides a®" + b%". We claim this implies
a—b=1. Assume a —b = 1. Form

q q K
a—b=TIpiy and o +b>=T1p T1 »,
m=1 m=1

m=q+1

with r, >i, (2n+ 1) >3 for m=1,2,...q.

We claim that if p; is one of the primes in the factorization of a — b, then p, = 2.
Since a — b = 0 (mod p;) and since ged(a, b) = 1, we may assume a =j (mod p,), and
b=j (modp,), where 0<j<p, This implies that a™+b™=j(a™ '+b™ ")
(mod p;), for m=1,2,...,2n. By assumption a*"+b*"=0 (mod p;). Since
ged(j, p;) = 1, this implies a®>"~! + b>*~! = 0 (mod p,). Continuing in this fashion, it
is clear that 2 =0 (mod p,), which implies that p; divides 2, as claimed.

We have shown that

K
02n+b2n=2R I—[ p:""',

m=q+1
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for some R > 3. In particular, 8 divides a>" + b?". On the other hand, since both a
and b must be odd, 2 divides a®" + b>", but 4 does not. This contradiction implies
that a — b =1.

Inserting a =b + 1 into our expression for z and x and recalling that y = —z
yields the solution as claimed.

I1. Solution to (a) by the Con Amore Problem Group, Royal Danish School of
Educational Studies, Copenhagen, Denmark.

Let u=x +y. For u =0, the equation has one solution, namely x =0, y = 0. For
u#0, let s=x/u and t=y/u and consequently s +¢=1. With x=su and y=
tu = (1 — s)u the equation becomes

+ 2n
u2n 1 _ S2nu2n (] S) u2n’
WhiCh redllces tO

u=s>"+(1-s)""=s2"+ (1-5)"",

and we find

x =s(82" +(s— l)zn),
y=—(s—1)(s>+(s—1)). (*)

If s is an integer, x and y are integers. Conversely, if x and y are integers,
u=x +y is also an integer, and s = x/u is a rational number. Let s =p/q, where p
and q are relatively prime integers, and g is positive. We will show that g =1, so
that s is an integer.

We have

2n 2n 2n+ _ 2n
uz(g) +(g_1) _pt(p-a)

q q2n ?

and therefore,

n n n 2 n— 271 n— 2n
uq2 =p2 +(p2 _( ln)p2 1q+,,,_(2n_1)pq2 1+q2)

=2p*" +qP(p.q),

where P(p,q) is a polynomial in p and g with integer coefficients. Therefore g
divides 2p2", and since p and g are relatively prime, it follows that ¢ divides 2; and
because of ¢ > 0 we then have g =2 or g = 1.

If g =2 then p is odd, and

P (p-2)™

u 47

One of the two consecutive odd numbers p and p — 2 must be congruent to 1 and the
other to —1 modulo 4. Both p*" and (p —2)*" are then congruent to 1, and the
numerator p2" + (p — 2)2" is congruent to 2 modulo 4. Therefore the denominator 4"
cannot divide p2" + (p — 2)®", and this is a contradiction, since u is an integer. This
shows that ¢ =2 is impossible, and we are left with ¢ =1, so that s is an integer.
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Besides x =0, y =0, the only possible solutions to the original equation are
therefore those given by (*), where s is an arbitrary integer, and it is straightforward
to check that they are indeed solutions.

Also solved by Seung-Jin Bang (Korea), Pierre Barnouin (France), Ty Le (two solutions), Jeff Nelson
(student), David Stone, John S. Sumner and Kevin L. Dove, Michael Vowe, and the proposer. No solutions
were received to part (b).

Zeros of order n October 1991

1382. Proposed by Michael Golumb, Purdue University, West Lafayette, Indiana.
Suppose f is a real-valued function of class C* near x, € R, and g is a real-valued

function of class C* near f(x,). Prove that if g o f— e (e the identity function) has a

zero of order n (1 <n <®) at x,, then fog—e has a zero of the same order at

flxg).

Solution by Robert L. Doucette, McNeese State University, Lake Charles, Louisiana.
Let a=geof—e and B=fog—e. For x near x,, B(f(x)) =f(x +a(x)) —f(x).
First assume that n = 1. We have a(x,) = 0, which implies g(f(x,)) =x,. With

these we may show that B(f(x,)) =0 and B'(f(x,)) = a'(x,) # 0.

Next assume that 1 <n < . By induction we can show that, for all finite k > 1,
there are functions Ag,...,A;x_y; @g,..., ¢x_, of class C* near x, such that the k-th

derivative of B(f(x)) equals both
a®(x) f'(x +a(x)) +fO(x +a(x)) —fP(x) + ]:ga“"(x))u(x) (1)
and
BR(F()(f(x)" + fgﬁ‘”(f(x))cpi(x)- (2)

Assuming that BO(f(x,) = BO(f(xy) = -+ =B* V(f(xy)) =0, 1<k <n, we
have, by equating (1) and (2) and evaluating at x = x,),
0 1<k<n
(k) . k_ = ’
BE(f(x0))(f(x0)) a™(x,)f'(x,) k=n.
Now a'(x,) = 0 implies that f'(x,) # 0. Since BO(f(x,)) = 0, we have, by induction,

BO(f(x0))=0, i=0,1,...,n—1, and B™(f(x,))#0.
For n = o the above argument can be modified to yield B(f(x,)) =0, i > 0.

Also solved by David Callan, Jean-Marie Monier (France), John S. Sumner, and the proposer.

Answers

Solutions to the Quickies on page 266.

Q794. The center of the desired tangent circle is the midpoint of the hypotenuse of
the right triangle drawn as in the figure.
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Q795. Since

(3(10!+1)/11)11 = 3loM+1 _ 310! 4 310! 310! _ (310!/4)4 + (310!/7)7 + (3101/9)9’
we can take a = 31074 ph =307 o =310/9 apnd d = 300+ b/11

Q796. The result is trivially true for n = 1, so suppose n > 1. If there exists x € G,
x #x 1, then, since the centralizer of x ! is equal to the centralizer of x, M has two
equal rows, so M is not invertible. So suppose that x =x~! for all x € G. Then, for all
LyeG, xxy=(xxy) "=y 'xx"=y=xx, s0 G is abelian. But this means that
all rows of M are equal, so M is not invertible.




