
Bernstein envelopes

Proposed by Rick Mabry, LSUS, Shreveport, LA, rmabry@pilot.lsus.edu.

The n + 1 Bernstein polynomials of degree n are defined by

bn,k(x) =
(n

k

)
xk(1− x)n−k, k = 0, 1, 2, . . . , n.

When all n + 1 polynomials are plotted on the same graph for a large fixed
n and 0 ≤ x ≤ 1, an “upper envelope” begins to emerge.
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y = bn,k(x), 0 ≤ k ≤ n for n = 20.

In fact, for suitable constants Bn (depending only on n), the n + 1 plots of

y = Bnbn,k(x), 0 ≤ x ≤ 1, k = 0, 1, 2, . . . , n

appear to approach a single (i.e., independent of n) fixed envelope y = β(x).
Find suitable Bn and β(x) (the choices are not unique).

[Note to editor: The pictures herein are not necessary. They are included
only as enticements.]
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Solution. We’ll show that for Bn =
√

n the limiting envelope is

y = β(x) =
1√

2πx(1− x)
.

(Note: the choice for Bn is not unique; any constants asymptotic to
√

n will
do. One can also multiply these Bn and β(x) by arbitrary positive constants
and still satisfy the statement of the problem.)

Method 1. Fix n and consider k to vary continuously in (0, n) (using gamma
functions in place of factorials), obtaining an infinite family of curves which
vary smoothly with k. It is convenient to let c = k/n and deal with the
family of curves

y = F (x, c) ≡ Bnbn,nc(x)

=

√
n Γ(n + 1) xnc(1− x)n(1−c)

Γ(nc + 1)Γ(n(1− c) + 1)
, 0 ≤ x ≤ 1, 0 < c < 1.

We now apply classical methods (see, e.g., [1]), according to which the en-
velope is the solution to

∂F

∂c
= 0. (1)

Letting ψ denote the digamma function,

ψ(z) =
Γ′(z)

Γ(z)
,

simplifying (1) yields

log

(
1− x

x

)
= ψ(n(1− c) + 1)− ψ(nc + 1).

Letting xn(c) denote the solution (in x) to this equation we obtain that

xn(c) =
1

1 + eψ(n(1−c)+1)−ψ(nc+1)
. (2)

The envelope of curves, for a fixed n, is then given by the parameterized
curve

(xn(c), yn(c)), 0 < c < 1,
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where yn(c) = F (xn(c), c). To find the limiting envelope as n → ∞ we use
the fact that

ψ(z) = ln z − 1

2z
+O

(
1

z2

)
(3)

(see, e.g., entry 6.3.18 or 6.3.21 in [2]) and we have

lim
n→∞

(ψ(n(1− c) + 1)− ψ(nc + 1)) = ln

(
1− c

c

)
,

which, using (2), implies that xn(c) → c as n → ∞. Noting that the quan-
tities nc and n(1 − c) go to ∞ as n → ∞, and we can we apply the usual
asymptotic properties of the gamma function (i.e., Stirling’s formula) to get

lim
n→∞

yn(c) = lim
n→∞

F (xn(c), c) = lim
n→∞

√
n Γ(n + 1) cnc(1− c)n(1−c)

Γ(nc + 1)Γ(n(1− c) + 1)

=
1√

2πc(1− c)
.

We have shown that

lim
n→∞

(xn(c), yn(c)) =

(
c,

1√
2πc(1− c)

)
,

which proves the claim.
Method 2. A sketch of the curves in question shows that, for a fixed

n, the “peaks” of the curves y =
√

n bn,k(x) appear to approach a single
smooth curve. Following this notion, and using elementary properties of
binomial coefficients, it is easy to show that each of the functions bn,k(x) has
a single relative maximum in the interval (0, 1) when x = k/n. The apparent
envelope can be found by first treating k as a continuous variable and forming
the parameterized (in k) curves (for each n)

Hn(k) ≡ (
k/n,

√
n bn,k(k/n)

)
,

and then letting n → ∞. The trouble is that this reasoning is completely
bogus! Such relative maxima don’t, in general, have anything to do with
envelopes of curves. Explicit illustrations of this are easy to construct. For
example, the maxima of the family of curves

y = h(c, x) =
sin(π ((1− c) x + c x2))

2

1 + c2
, x ∈ [0, 1], c ∈ (−1, 1)

do not coincide with the envelope of the family.
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[Dear editor: This second method of “solution” is, of course, quite unneces-
sary to mention unless a significant number of solvers employ it!]
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