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Let S$ = {(x, y) : x, y are rational, x < y, x* = y”}. Note that (1/4, 1/2) isin S. Find
an accumulation point of S or prove that S has no accumulation points.

704. Proposed by Roger B. Nelsen, Lewis & Clark College, Portland, OR

We say that a continuous random variable is symmetric about zero if the density func-
tion of the random variable is an even function. Let X and Y be identically distributed
continuous random variables. Prove or disprove:

(a) The difference X — Y is symmetric about zero.
(b) If X and Y are symmetric about zero, then so is the sum X + Y.

Do your answers in (a) or (b) change if X and ¥ are also assumed to be independent?

705. Proposed by Ayoub B. Ayoub, Pennsylvania State University, Abington College,
Abington, PA

If 0 < a < b, prove that
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SOLUTIONS
A Viewing Window for Limagons

676. Proposed by Rick Mabry, LSU-Shreveport and Paul Deiermann, Lindenwood
University

Letr(@) =1+ bcos(@), where 0 < b < 1, describe a limagon in polar coordinates.
Determine the smallest rectangle of the form [x;, x;] X [y1, y,] that contains all these
graphs. (This rectangle could be used as a fixed viewing window that contains the
graphs of each of the limagons.)

Solution by Jack V. Wales, Jr., The Thacher School, Ojai, CA

We seek the supremum and infimum of x = r cos () = cos () + bcos?(@) and
y = rsin(d) = sin(@) + %’sin(29) over0 <b <1,0 <6 < 2x. Since both x and y
are continuous functions of b at b = 0 we can extend the domain to include b = 0.
Since cos?(6) > 0, it is clear that —1 < cos(f) < x < cos(f) + cos?(9) < 2. For
=landd =0,x =2andforb =0and 6 = w, x = —1. Thus [x{, x,] = [—1, 2].
Since the graph of the limagon is symmetric about the x axis, y; = —y,. For
0 <6 < 7, sin(20) is positive and for 7 < 6 < m, sin(20) is negative. Thus for each
6 in the latter interval, y attains a maximum when » = 0, and for each 6 in the former
interval, y attains a maximum when » = 1. On % <60 < m with b =0, y attains a
maximumof 1 at 6 = % Thus the maximum value of y will occuron 0 < 8 < % with
b = 1. Standard calculus techniques reveal that this happens at & = %. Therefore,
[yi, y2l = [ 283, 23]
Also solved by MICHEL BATAILLE, Rouen, France; BEN B. BOWEN, Vallejo,
CA; JEREMY CASE, Taylor U.; ROBERT D. CRISE, Jr.; RICHARD DAQUILA,
Muskingum C.; JAMES DEUMMEL, Bellingham, WA; DAVID DOSTER, Choate
Rosemary Hall, Wallingford, CT; GREG DRESDEN, Washington and Lee U.;
BILL DUNN, III, Montgomery C.; BILL GERSON, Prince Georges C. C.; JOHN
GRAHAM, Penn State Wilkes-Barre; RICKY IKEDA, Leeward C. C.; PETER M.
JARVIS, Georgia C. & State U.; KIM McINTURFF, Santa Barbara, CA; THOMAS
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J. OSLER, Rowan U.; WILLIAM SEAMAN, Albright C.; R. S. TIBERIO, Natick,
MA; SAMUEL A. TRUITT, Jr., Middle Tennessee State U.; THOMAS VANDEN
EYNDEN, Thomas More C.; DOUG WILCOCK, Cape Cod Academy, MA; LI
ZHOU, Polk C. C.; and the proposer.

An Inverse Function

677. Proposed by Geoffrey A. Kandall. Hamden, CT

The function f : (0, 00) — (—00, 00) defined by f(¢) = ;‘—:ﬁ‘j% — coth(?) is in-

creasing and onto. Derive an explicit formula, that involves only algebraic functions
and natural logarithms, for the inverse function f~'.

Solution by M. Reza Akhlaghi, Prestonsburg Community College, Prestonsburg, KY
The function f satisfies

(14 e*)(e* —2e' — 1)
2e!(e? — 1)

y=f@)=

with f(In(1 + V2)=0.Letu = ¢'. Solving for u in terms of y, we are led to
u* =20y + Dl +2(y — Du—1=0.
This equation factors:

(= O+ Du—y =¥+ 1+ D) (¥ = G+ Du—y+ V3 +1w+1) =0.

The fact that y = 0 when u = 1 + +/2 shows that only the left factor will yield a
solution; using the quadratic formula it also shows that

u:l(y+1+ y2+1+\/(y+1+\/y2—+1)2+4(y+\/y_2:—1>)

2

is the only acceptable solution. The desired function is t = f~!(y) = In(u).

Also solved by MICHEL BATAILLE, Rouen, France; BRIAN D. BEASLEY, Pres-
byterian C.; JOSEPH COSTER, Macomb, IL; DANIELE DONINI, Bertinoro, Italy;
JAMES DUEMMEL, Bellingham, WA; BILL DUNN, III, Montgomery C.; FLORIDA
GULF COAST PROBLEM GROUP, Florida Gulf Coast U; JOHN GRAHAM, Penn
State Wilkes-Barre; MURRAY S. KLAMKIN, U. of Alberta, HARRIS KWONG,
SUNY C. at Fredonia; KIM McINTURFF, Santa Barbara, CA; STEPHEN NOLTIE,
Ohio U.- Lancaster; WILLIAM SEAMAN, Albright C.; CORNELIUS STALLMAN
and GERALD THOMPSON, Augusta State U.; SAMUEL A. TRUITT, JR., Middle
Tennessee State U.; OMER YAYENIE and MOHAMUD MOHAMMED, Temple U.;
LI ZHOU, Polk C.C.; and the proposer.

A Double Sum
678. Proposed by David Atkinson, Olivet Nazarene University, Kankakee, IL
Forn =0, 1,..., find the value of the double sum )/, Z';;g (—l',i—),i as a function

of n.
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