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Rick Mabry (rmabry@lsus.edu) is not a serious
mathematician, but he’s serious about mathematics. At
times his topics of (mathematical) interest seem to have
intersected the recreational—pool, pizza, even beer and
darts have come up, but he is not a recreational
mathematician. On that note, Rick also has musical
interests, but he is not a musician. He’s a drummer.
(Ba-dump, bump, PSSHHH! An old drummer joke, that.)

This article started out as a napkin in a local establishment for imbibing and gaming
in Shreveport, Louisiana. On the napkin was scribbled a diagram and some mathemat-
ics. The napkin then found itself thumb-tacked to the wall next to a pool table in said
venue, the better for its authors to discuss any potential practical merits of the scrib-
blings. Sadly, the napkin did not survive another two weeks, being removed either by
an overzealous barkeeper, the tavern’s owner, or one of the mathematically averse cus-
tomers (of which there were many). Many years later, the napkin was missed and this
article is its embellished reincarnation.

The mathematics here is elementary. Beyond basic trigonometry and elementary
differential calculus, the only specialized knowledge required pertains to the geometric
consequences of elastic collisons of spheres of uniform density. Some success in a
laboratory component of the latter would be helpful. In other words, the usual first-year
American barroom calculus sequence suffices as background. Familiarity is assumed
with the basic jargon; terms such as “cue stick,” “billiard ball,” and “limit” will be used
freely.

Let us set the scene more precisely. You are playing pool with a colleague or student,
say a game of “8-ball,” and your opponent scratches. (To scratch is to commit a foul
such that the cue ball is taken out of play, resulting in the situation of ball-in-hand. This
typically occurs when the cue ball errantly lands in a pocket, but also when the cue
ball (even more errantly) completely leaves the table itself. Only the two-dimensional
aspects of pool will be considered here, so we need not consider the latter situation.)
The rules dictate that after your opponent scratches, you freely place the cue ball by
hand for your next shot. Well, not entirely freely, but you have some latitude—even
quite a bit of longitude—you can place your ball anywhere you like between the head
cushion and the head string (see Figure 1) and shoot at any object ball situated entirely
between the head string and the foot cushion. It often happens that you then have an
unobstructed shot at a ball and a clear path to the pocket. You decide, as do most
players, to shoot straight into a pocket by placing the cue ball exactly in line with the
pocket and the object ball.

Experienced players agree that such a straight-in shot is relatively easy if the object
ball is either extremely close to the cue ball or extremely close to the pocket. This very
idea, that both extremes should be easy, surprises some less experienced players, many
of whom assume or feel that shot can only be easier if the cue ball is nearer the object
ball. Some of them have the opposite opinion, that the cue ball being too near the
object ball presents more difficulty. Even more interesting is that experienced players
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Figure 1. Straight-in shots to a corner pocket: easy, harder, easy. Where is the object ball for
the hardest shot?

tend to agree that of the two easy extremes, one is easier than the other. (Which one?)
This conundrum leads to the first of two main questions we want to address here.

Question 1. Which of the two extreme situations (object ball very near the cue ball
versus very near the pocket) is easier, or are they equally easy?

The second question was the subject of the lost napkin. If the two extremes pertain-
ing to Question 1 have limiting difficulties of zero (we will have to make the notion of
“difficulty” precise), then there is an intermediate distance of maximum difficulty. Is
it half-way? Perhaps, but the geometry is not symmetric, so perhaps not. Two-thirds?
Something involving the golden ratio? (Pleeease, let it be so.)

Question 2. What distance from the cue ball to the object ball makes the shot most
difficult?

How difficult is a shot?
We need a “measure of difficulty.” This is not easily agreed upon, but let’s say you are
sufficiently skilled that your errors are associated only with the physical aiming of the
cue stick. We quantify this error as the angle between two lines—the line through (the
centers of) the cue ball and the pocket, and the line of travel of the cue ball after it is
struck. Letting θ be this (nonnegative) angle, we can compute the resulting deviation
of the object ball from the pocket as it nears its target. The greater the deviation (for a
given θ), the greater the difficulty.

To simplify the problem, forget about pockets and consider the situation shown
in Figure 2. The cue ball and object ball have equal radii r . The cue ball is initially
centered at A = (0, −2r) and the object ball at B = (0, y), where 0 ≤ y ≤ 1 and
0 < r < 1/2. (Notice that when y = 0, the cue ball and object ball are touching.) You
aim to have the cue ball strike the object ball dead-center in order to send the center
of the object ball across the target point D = (0, 1), but your aim is slightly off by
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an angle θ . Letting C denote the center of the cue ball at the moment of its impact
with the object ball, θ is equal to the measure of � B AC . After impact, the line of
travel of the object ball is along the line through C and B. Of course, we assume that
θ is small enough so that the cue ball hits the object ball, that is, sin θ ≤ 2r

y+2r . Let
x = x(y, θ, r) = DE be the horizontal deviation when the object ball crosses the line
y = 1 at E . We choose x as our measure of difficulty, the choice being natural, albeit
somewhat arbitrary. (Other choices make sense, for example, the length of arc given
by DB times � DBE.) It is clear that x = 0 if y = 0 or 1, independent of θ and r , so for
each fixed θ and r , x will attain a maximum value for some y in (0, 1).

O

A

C

B

D E

x

θ

y = 0

y = –2r

y = 1

Figure 2. The moment of contact. Shooting for D, but ending up at E .

Finding a formula for x is an easy exercise in trigonometry.

Fact 1. The deflection x is given by

x(y, θ, r) = (1 − y) tan
(

sin−1
((

1 + y

2r

)
sin θ

)
− θ

)
,

for 0 < r < 1/2, 0 ≤ y ≤ 1, and 0 ≤ θ ≤ sin−1(2r/(y + 2r)).

Note: Proofs of all Facts are available at [5].

Answering Question 2
The next fact is an easy consequence of the previous one, needing only some familiar-
ity with calculus. Here we consider r and θ to be fixed, with θ small.
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Fact 2. For θ ≈ 0,

x ≈
(

(1 − y)y

2r

)
θ. (1)

More precisely,

lim
θ→0

(1 − y)y

2r

θ

x(y, θ, r)
= 1.

The next fact follows easily, and answers Question 2.

Fact 3. For θ ≈ 0, the approximate deviation x given in (1) is maximized when
y ≈ 1/2.

Again, a more precise statement involves a limit; the preceeding applies only
asymptotically, as θ → 0. We will discuss more realistic values of θ in due course.
An even more realistic approach is to consider θ as a small-valued random variable,
and we briefly address that, too. A caveat about realism, though: our considerations
are purely mathematical, taking into account none of the interesting physics at work
in real pool playing (spin, banking, friction, etc.) For the real deal the reader should
consult [1] and [2].

Meanwhile, it is interesting (but not surprising) that Fact 3 puts the object ball ex-
actly midway between the extreme values of y in our scenario, as θ → 0.

No golden ratio 〈sigh〉.
Having so easily answered Question 2, we briefly carom off to consider the gener-

alization to “combination shots.” Suppose that n object balls are placed in sequence
at positions (0, yk), with 0 < y1 < y2 < · · · < yn < 1, where yk+1 − yk > 2r for
1 ≤ k < n (so that the balls do not intersect). The goal is to shoot the cue ball into
the first object ball, which then strikes the second, and so on, until the last (nth) ball
crosses the line y = 1. The hope is that the balls all move along the same straight line
toward the point (0, 1).

Let xn denote the deviation of the nth ball at y = 1. Using the same elementary
approximations as employed earlier, it can be shown that for small errors in the initial
angle θ , the greatest value of xn occurs when the balls are evenly spaced.

Fact 4. Fix r in (0, 1
n+1 ). Then for θ → 0, the maximum deviation xn correspond-

ing to a straight-in n-ball combination shot occurs for a common separation �y =
1−(n−1)2r

n+1 , giving yk = k�y + (k − 1)2r = k−(n−2k+1)(2r)

n+1 . For θ ≈ 0, this gives a devi-
ation

xn ≈
(

1 − (n − 1)2r

(n + 1)2r

)n+1

2rθ. (2)

So how hard is the two-ball combo compared with the single-ball case? The pre-
vious estimate gives x2

x1
≈ 4

27 · (1−2r)3

2r . (Note that x1 is equivalent to x in the original
case of one ball, and that setting n = 1 correctly reduces Fact 4 and its development
to that.) American barroom pool balls have radii of about 1.125′′, and pool tables mea-
sure about 46′′ × 92′′ (cramped taverns) or 50′′ × 100′′ (classier joints) [6]. The length
of the longest possible shot shown in Figure 1 is thus about 83′′ for the typical, smaller
barroom pool table. Scaling this to y = 1 gives a corresponding value of r we de-
note by r̃ , where r̃ ≈ .014. With r = r̃ , we get x2

x1
≈ 5.0, meaning that on the shorter
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tables, the hardest two-ball combination shot is about five times as hard as the hardest
single-ball shot of the same length.

It seems reasonable that the value of xn increases with n, but in our scenario this is
only true up to a point. This can be seen by considering the quantity being exponen-
tiated in (2), which becomes less than 1 for large n, or by considering a limiting case
of all n balls touching from cue ball to pocket, in which case the error xn is zero. (For
r = r̃ , this nearly occurs when n = 39.) We therefore expect xn to have a maximum
for each r . For r = r̃ this occurs when n = 7 or 8, each of these values giving a relative
difficulty xn

x1
of around 140 as θ → 0. The ratio xn

x1
(again, for r = r̃ and as θ → 0)

is closest to 1 when n = 15 and decreases quickly for larger n. (See Table 1.) So (if
you dare), try a 16-ball straight-in combination shot against your opponent’s measly
midway single-ball shot. (Um, it’s best not to “bank” on that—check the math before
wagering any large sums.)

Table 1. Relative difficulty Dn := limθ→0
xn
x1

for r = r̃ .

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Dn 5.0 17. 42. 79. 120 140 140 120 81. 47. 23. 9.1 3.1 .89 .21 .041

We now return to the case of one object ball, as we consider the more realistic
situation of “large” values of θ , in order finally to address Question 1.

It turns out that the situation is increasingly asymmetrical with increasing θ , the
most difficult shot occurring when y is somewhat greater than the midway value of
1/2. This can be shown in the following way. Fix θ and r and let f (y) = x(y, θ, r).
Using Fact 1, one can prove the following two facts.

Fact 5. The function x = f (y) is concave down.

Fact 6. The unique maximum of f (y) occurs for y > 1/2.

Fact 5 can be verified by showing that f ′′(y) < 0. Since f (0) = f (1) = 0, there is
a single maximum value of x . Fact 6 can then be proven by showing that f ′(1/2) > 0.
(See Figure 3.)

1/2 1
y

x

Figure 3. Plots of x = f (y), with r = .05 and θ = 1◦, 2◦, 3◦, 4◦, 5◦.
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Answering Question 1
We turn now to the relative difficulty of the two “easy” types of shot corresponding to
y ≈ 0 (the “near” shots with the object ball near the cue ball) and y ≈ 1 (the “distant”
ones with the object ball near the pocket). Figure 3 shows a curve that is steeper at
y = 1 than at y = 0. If this is true for all admissible θ and r , then f (u) < f (1 − u)

for sufficiently small u, showing that the difficulty is indeed asymmetric, with distant
shots being harder than near ones, at least for object balls sufficiently near the cue ball
or pocket (and, lest we forget, for our adopted measure of difficulty). This is confirmed
by the next fact.

Fact 7. If 0 < r ≤ 1/2, then f ′(0) < − f ′(1).

Verifying that sin−1((a + 1) sin θ) > tan−1(a tan θ) + θ for a = 1/2r and 0 <

sin θ < 1/(a + 1) establishes Fact 7. Furthermore, the following, stronger statement
holds.

Fact 8. f (1 − u) > f (u) for 0 < u < 1/2.

The verification of Fact 8 is significant, for it removes the caveat of “sufficiently
small u” in judging the answer to Question 1. That, in turn, allows us to consider
the incorporation of random variables. Certainly, even the best player makes small
errors, but not always the same ones! The angle θ should vary over some range of
values, each shot producing a different θ . If we assume τ(θ) denotes a probabilty den-
sity function for θ (a smooth τ makes sense), then the expected value of x is given by
x̄(y) = ∫ θ0

0 x(y, θ, r) τ (θ) dθ for each y ∈ [0, 1] (and fixed r ; θ0 is some arbitrary up-
per bound on θ). We may use Leibniz’ rule to differentiate under the integral, obtaining
x̄ ′′(y) = ∫ θ0

0
∂2

∂y2 x(y, θ, r) τ (θ) dθ . (Many advanced calculus texts treat Leibniz’ rule.
See [4, p. 597] for a friendly approach; see [3] for a more complete story.) We have
already noted that f ′′(y) < 0, so the integrand is everywhere negative, hence x̄(y) is
concave down. It is clear that x̄(0) = x̄(1) = 0. And since f ′(y) > 0 for 0 ≤ y ≤ 1/2,
we also have that x̄ ′(y) = ∫ θ0

0
∂

∂y x(y, θ, r) τ (θ) dθ > 0 for 0 ≤ y ≤ 1/2. This means
that the expected value of x , just as with f , has a unique maximum at some value
of y greater than 1/2. The asymmetry holds—shots are harder somewhere past the
midpoint.

Extreme pool
Our final investigation concerns extreme values of x .

Question 3. How large can x be?

Let θmax denote the largest value of θ that makes sense for all y in (0, 1), namely,
θmax = sin−1(2r/(1 + 2r)). A value of θ > θmax corresponds to a shooter who will not
be able to make the longest shot (y = 1), and we hereby retire such players.

Clearly, for unrestricted θ , there is no theoretical maximum for x so long as the
player at least strikes the object ball and r is allowed to be arbitrarily small. Extremely
small values of r may be unrealistic, but even for the reasonable value of r = .02,
which corresponds to shots at about half the length of a barroom pool table, the maxi-
mum x is around six lengths of the shot. Anyway, we have already eliminated any such
poor shooters from consideration by requiring θ ≤ θmax.
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For fixed y and r , x is obviously an increasing function of θ , so we consider the
maximum displacement m(y, r) := x(y, θmax, r). For a given r , what is the max-
imum of m(y, r) for 0 ≤ y ≤ 1? A numerical calculation gives the maximum of
m(y, r̃) ≈ .29, occurring for y ≈ 0.61. (Recall that r̃ is our scaled “realistic” value
of r corresponding to a typical barroom table.) Just for fun, consider very small r .
(This is equivalent to fixing r and letting the size of the table grow large.) Since x is
also an increasing function of 1/r (for fixed y and θ), there is a maximum M of x for
0 ≤ θ ≤ θmax, 0 < r < 1/2 and 0 < y < 1, namely

M = lim
r→0+ max

0<y<1
m(y, r).

Fact 9. For fixed r , the function m(y, r) has a unique maximum on the interval
0 ≤ y ≤ 1. If yr is where it occurs, then

lim
r→0+ yr = 1/φ,

where φ is the golden ratio!

Well I’ll be snookered.
Honestly, the appearance of φ is entirely serendipitous. There was no intentional

mining, panning, or digging for gold. In any event, it shows that the most difficult shot
for the most error-prone viable shooter occurs when y is close to 1/φ = .61803 . . . ,

and that the least upper bound of the deviation is M = 0.30028 . . . .

Conclusion
After all this, we readily concede that our model needs more scrutiny. For one thing,
there is more to making a good pool shot than aligning the stick—one must to judge
the point of contact accurately. But in this case, too, it can be argued that θ is still the
critical quantity. In that sense, perhaps our approach applies somewhat realistically,
regardless of whether the player can’t shoot straight or can’t see straight. But not to
be ignored is that straight-in shots are the easiest of the shots presented to pool shoot-
ers. Our treatment, especially of combination shots, is highly idealized, since all the
shooter needs to do is aim for the center of the first ball, period. In practice, however,
a combination shot is virtually certain not to be straight-in, and so the shooter must
then judge the many points of contact between balls, produced in succession, as well
as actually hitting the correct spot. Another issue is that a successful shot does not
require pinpoint accuracy, as the pockets are larger than the balls (typically by a factor
of about two—the opposite of Figure 1). This actually compensates more for errors on
longer shots than on smaller ones. Are the longer shots still more difficult in this case?
Incorporating such complex realities might make for interesting projects. Analyzing
the effect of slight errors in the placement of balls for a straight-in combination shot
would also be enlightening and might lead to results that are testable in the pool hall.

On that note, perhaps someone reading this will have an itch to substantiate (or
refute) our claims by trial and error. Line ’em up then. Chalk up the cue and let the
scratching begin!

Summary. When playing pool or billiards, a player often has the opportunity to make a
“straight-in” shot, that is, one in which the cue ball, the object ball, and the target (e.g., a
pocket) are collinear. With the distance from the cue ball to the target assumed fixed, the rel-
ative difficulty is here explored of shots taken at varying positions of the object ball between
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the cue ball and target. What position of the object ball makes the shot the most difficult? This
is the question addressed in the article. Proofs of the results, ranging from easy to challenging,
are left as exercises and also posted on the CMJ web site.

Acknowledgments. Every editor eschews acknowledgments. (“Just doing my job.”) In this
case, however, special thanks are certainly due successive editors Lowell Beineke and Michael
Henle of CMJ whose pooled patience (regarding some snarkiness of the author) and con-
tributed ideas greatly improved this article.
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Finally, the Great Consult began. They discussed tenure procedure. They revised
policy on sabbaticals. They rehearsed, to palsied lengths, curriculum changes,
cross-registration, crises in enrollment. It suddenly became a great din of objec-
tions, fierce denials, and loud peevishness all expressed in noises like the farting
of laurel in flames with everybody going at it head to head as if they were all try-
ing, right then and there, to solve the problem of circular shot, perpetual motion,
and abiogenesis!

Staring in disbelief, Darconville looked on in a kind of autoscopic hallucina-
tion as each of the faculty members rose in turn to make a point that never seemed
to have an acute end. It was all queer, make-shift, and unpindownable, for all
the cube-duplicators, angle-trisectors, and circle-squarers seemed to keep busy
avoiding any question that hadn’t sufficient strength to throw doubt on what-
ever answer couldn’t have been offered anyway lest an ineffacious solution only
prove to muddle a problem that couldn’t be raised in the first place. The discus-
sion, rarely deviating into sense, grew round with resolutions and amendments
as they sacrificed the necessary to acquire the superfluous and did everything
twice by halves, for, like Noah, they had two of everything—two, it might be
said, they didn’t need so much as one of—two policies, two excuses, two faces
and, always, forty-seven reasons to prop up both.

—from Darconville’s Cat by Alexander Theroux
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Teaching Tip: A “Wire Hanger” Frénet-Serret Frame

Julian F. Fleron (jfleron@wsc.ma.edu), Westfield State College, Westfield MA
01086

I was excited to see U. A. Hoensch’s article, “A ‘paperclip’ approach to curva-
ture, torsion, and the Frénet-Serret formulas,” in this JOURNAL [March 2009, pp.
113–118]. Readers may be interested in a related model I built many years ago
as a multi-variable calculus manipulative for exploring the Frénet-Serret frame.

To construct the model, shape a typical wire hanger by hand to form a nice
space curve. Then drill a small hole—just bigger than the gauge of the wire
hanger—through the center of two opposite faces on a small wooden block.
Also drill three smaller holes—the exact gauge of the wire hanger—half way
through one of the already drilled faces and two adjacent faces. Insert short,
straight lengths of hanger wire into each of these three holes to serve as the unit
tangent, normal, and binormal vectors of the Frénet-Serret frame. Finally, slide
the wire hanger space curve through the block and you have your own vector
calculus manipulative—a hands-on Frénet-Serret frame (see Figure 1).

Figure 1. Two views of a wire Frénet-Serret frame.

While access to technology provides tools to represent and automate move-
ment along space curves, students will find this concrete, three-dimensional
model to be quite a bit more helpful as they develop an understanding of space
curves and the Frénet-Serret frame. The pilot hole drilled through the block is
linear, so the unit tangent vector is automatically aligned tangentially with the
space curve as the block moves along the curve. On the other hand, the block
itself has no way of measuring the higher order geometry of the space curve, so
students must adjust the normal and binormal vectors by hand. In this way they
gain real experience with the mathematics and develop a deeper appreciation of
the Frénet-Serret frame.

The wire curve can be readily bent to model any space curve. It is inexpensive
and easy to make. For all these reasons, it is a valuable tool to help introduce
students to this beautiful topic.
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