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Rick Mabry

INTRODUCTION. This supplement contains various extensions of discussions of
topics found in the article, “Fibonacci Numbers, Integer Compositions, and Nets of
Antiprisms” [3].

Labels herein prefixed with “M” refer to corresponding labels in that main article.
The contents are as follows, with the section numbers from [3] added where warranted:

1. Special and degenerate cases. Subsection M2.4. The 3-antiprism (as distinct from
the octahedron); the 2-antiprism (as distinct from the tetrahedron) and 1-antiprism (as
distinctly absurd).

2. Alternative proof of Lemma M1. Section M3. The coolest part—an induction and
recursive generation of the symmetric (n+ 1)-nets from the symmetric n-nets.

3. Path nets. Subsection M5.2. Counting the nets whose spanning tree is a path.

4. Head counts. Some fine structure among the different families.

5. Labeled nets. Kirchhoff’s theorem, counting the labeled nets, and a determinant
problem.

Warning: Due to the graphic nature of our program (by means of various dismember-
ments and graftings), reader discretion is advised.

1. SPECIAL AND DEGENERATE CASES. The n-antiprisms when n = 3 require
special consideration for reasons described below. Consideration of two more “degen-
erate” cases, n = 2 and n = 1, aren’t necessarily interesting from a geometric point
of view, but they are included here because they so nicely fit into our scheme of things
in the purely combinatorial sense (they make sense as arrow-grams, at least) and be-
cause they can serve as more convenient “base cases” for the inductive proof in the
next section, due to the smaller number of objects that must be individually checked.

1.1. Special case: n = 3. When n = 3 the two 3-gonal heads are congruent to the
band’s triangular faces, but we consider the heads to be distinct. (If they are not con-
sidered distinct, then what we really have are nets of the regular octahedron, which
has only 11 distinct nets, as does its polyhedral dual, the cube; see [4].) Figure 1
shows the complete list of these distinct 3-antiprism nets, with the heads marked in
green and various body parts differently shaded. (Necks are red, collars are blue.)
Note that, as promised, there are exactly 8 = F6 = s3 symmetric nets among the
36 = s3(s3 + 1)/2 = t3 members of the collection T3.
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Figure 1. All 36 members of T3. The 8 members of S3 are marked (#9, 22, 27, 28, 30, 32, 34, 36).

1.2. Degenerate case: n = 2. When n = 2, if we want to consider 2-gons (some-
times called digons) as viable heads of antiprisms, we obtain nets that are indistin-
guishable due to the degeneracy of the heads, which become line segments. As plane
figures, these are identical to the nets of the regular tetrahedron, of which there are
exactly 2. As antiprism nets, there are instead exactly 3 = F4 = s2 symmetric ones
among the 6 = s2(s2 + 1)/2 = t2 members of the collection T2; see Figure 2. These
can be folded into a 2-antiprism (identical to the tetrahedron) with the two “oppo-
site” edges (marked in green) becoming the 2-gonal heads (numbered 0 and 5) of the
2-antiprism.
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Figure 2. All 6 members of T2. The 3 members of S2 are marked (#3, 4, 6).

Arrow-grams for two of the six 2-antiprisms are shown in Figure 3.
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Figure 3. Arrow-grams (left) of nets (right) #5 and #6 of Figure 2.
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1.3. Very special case: n = 1. We can even insist that when n = 1 we have a mean-
ingful situation, though for a plane net or three-dimensional interpretation the heads
of a 1-antiprism would need to be considered as 1-gons (points). We leave such head
scratching to the reader’s imagination. In a strictly combinatorial sense there is no dif-
ficulty, and we obtain exactly one 1-antiprism, which is symmetric. Thus 1 = F2 = s1
and 1 = s1(s1 + 1)/2 = t1, so all’s well with our alleged formulas in this case, too.

In Figures 4 and 5 the arrow-grams for the complete 1-antiprism and its only net
are shown. Observe also that in Figure 4 we have a multigraph, as there are two edges
(the central one and the wrap-around) joining the only two band members (imaginary
triangular faces) 1 and 2. Deleting either of these edges gives the same labeled graph,
our standardized version of which is shown in Figure 5.

1

2

Figure 4. The arrow-gram of the 1-antiprism.
Two edges join faces 1 and 2.

1

2

Figure 5. The arrow-gram of the only net of the
1-antiprism.

2. ALTERNATIVE (ORIGINAL) PROOF OF LEMMA M1. This was the origi-
nal proof found for Lemma M1. (It is what actually inspired the article.) It is elemen-
tary and illustrates interesting recursive properties of the objects in question, whether
these are the symmetric nets or their surrogates—the compositions of integers used in
the first proof. It actually provides a proof of the result (M6), though we do not fashion
it that way. And it is a fitting match for the proof of the total count (Theorem M2)
in the article [3], using similar sensibilities: we’ll mutilate and rearrange existing nets
(occasionally using spare body parts) to make new ones. Not only that, but with this
proof the results are self-contained and the Fibonacci properties are revealed.

We repeat the statement of the lemma below.

Lemma (M1). For each n ≥ 1, the number sn(h, k) of symmetric nets of the n-
antiprism having neck size h and lapel size k is given by

sn(h, k) =

{
1 if h+ k = n
F2(n−h−k) if 1 ≤ h+ k < n.

(M4)

Alternative proof of Lemma M1. This proof of the lemma is by induction. The claim
of the lemma is embodied in the table of Figure 6, which we refer to as the table of
order n. The motivation for the inductive step of our proof can be seen by comparing
that table with the one of order n+ 1 in Figure 7.
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sn(h, k) h = 1 2 3 · · · n− 1 n

k = 0 F2n−2 F2n−4 F2n−6 · · · F2 1
1 F2n−4 F2n−6 · · · F2 1
2 F2n−6 · · · F2 1
...

...
...

...
n− 2 F2 1
n− 1 1

Figure 6. The claimed table of values of sn(h, k).

sn+1(h, k) h = 1 2 3 4 · · · n n+ 1

k = 0 F2n F2n−2 F2n−4 F2n−6 · · · F2 1
1 F2n−2 F2n−4 F2n−6 · · · F2 1
2 F2n−4 F2n−6 · · · F2 1
...

...
...

...
...

...
...

...
...

n− 1 F2 1
n 1

Figure 7. The table of values of sn+1(h, k) to be established by induction.

In each table let’s refer to certain subsets of indices as in Figure 8:

Part A: the columns h > 1.
Part B: the entries k > 0 in the column h = 1.
Part C: the single entry for h = 1, k = 0.

1 2 · · ·

0 C
1 A
2 B
...

Figure 8. The “ABC” layout.

We further let A, B, and C refer to various sets of indices, nets, or just parts of the
tables when convenient. Subscripts on those same labels will indicate the order of the
table, for instance, Bn+1 refers to part B of the table of order n+ 1. We’ll stretch this
notation further by letting S(An) =

⋃
{Sn(h, k) : h > 1}, and so on.

Now towards our proof, observe that the values inAn+1 (in Figure 7) are identical to
those in the combined partsAn,Bn, andCn, i.e., the entire table of order n in Figure 6.
This suggests we look for one-to-one mappings between the subsets of S(An+1) and
Sn = S(An) ∪ S(Bn) ∪ S(Cn) that correspond to matching entries of the tables.
Similarly, Bn+1 is identical to the combined parts Bn and Cn, so we’ll look for such
correspondences between S(Bn+1) and S(Bn) ∪ S(Cn). For the remaining lone cell
of Cn+1, we have already shown that the sum of all the entries in An, Bn, and Cn is
equal to the single entry F2n ofCn+1. That suggests we find correspondences between
S(Cn+1) and all of Sn.

For the base case of the induction, all the nets for the cases n = 1, 2, or 3 (reader’s
choice) are accounted for in Figures 5, 2, and 1, respectively, making verification
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s2(h, k) h = 1 2
k = 0 F2 = 1 1

1 1

s3(h, k) h = 1 2 3
k = 0 F4 = 3 F2 = 1 1

1 F2 = 1 1
2 1

Figure 9. Values of sn(h, k) for n = 2 and n = 3.

straightforward. For convenience, Figure 9 shows versions of the table given in Fig-
ure 6 for the cases n = 2 and 3. (The table for n = 1 consists of a single cell that says
s1(1, 0) = 1.)

To fully check the base case, the numbers of nets of different neck and lapel sizes
need to be confirmed, and it is easy to scan Figure 2 or 1 and collect the various (h, k)
for this purpose. As an example, the nets witnessing s3(1, 0) = F4 = 3 are those
numbered #9, 27, and 28 in Figure 1. Beyond that, the reader is left on the hook for
checking that all symmetric nets for n = 2 and n = 3 are indeed given in Figures 2
and 1, the first of these, for n = 2, being (arguably) easier. (And why not start with
n = 1? If you wish, dear reader, but the pictures probably won’t make as much sense.)

We proceed then to the inductive step of the induction and assume that our claim
(the table in Figure 6) holds for symmetric antiprisms of order n.

Part A. To each member of Sn we do the following: without changing its lapel size,
we increase its neck size and head size by 1. See the examples in Figures 10 and 11.
Compare the arrow-grams and notice that the arrow-gram criteria guarantee that the
insertion of a pair of neck vertices into a valid arrow-gram of order n results in a valid
arrow-gram of order n+ 1, and therefore gives a net of the antiprism of order n+ 1.
Symmetry is preserved and the lapel counts are unchanged. On the resulting net, the
heads have an added edge to accomodate this neck-stretching; as the edge is inserted,
heads will roll from the center, all the head decorations carried forth by one edge. The
lapels remain in place, unruffled by the operation.
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Figure 10. Part A. Increasing the neck size. (Here h goes from 1 to 2; k = 0.)
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Figure 11. Part A. Increasing the neck size. (Here h goes from 2 to 3; k = 1.)
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We have just described a bijection fA : Sn ↔ S(An+1) that takes each Sn(h, k)
bijectively to Sn+1(h+ 1, k), the inverse mapping being clear, as any member of Sn+1

having h > 1 can have its neck size decremented in the obvious, reversed way. As a
consequence, sn+1(h+ 1, k) = sn(h, k) for all (h, k) of the nth order table.

Part B. To each member of Sn(1, ∗) we increase the lapel size by one without
changing the neck size, while increasing the head size by 1. See Figures 12 and 13.
The arrow-gram criteria verify that the construction is correct. As a lapel face is
added, the head decorations shift one place, accordingly, as a new head edge is in-
serted. This defines a bijection fB : S(Cn) ∪ S(Bn) ↔ S(Bn+1) that bijectively
takes each Sn(1, k) to Sn+1(1, k + 1), showing that sn+1(1, k + 1) = sn(1, k) for
0 ≤ k ≤ n− 1. We have by now copied parts B and C (the first column) of the nth
order table in Figure 6 onto part B of the table of order n+ 1 in Figure 7.
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Figure 12. Part B. Increasing the lapel size when h = 1. Here k goes from 0 to 1.
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Figure 13. Part B. Increasing the lapel size when h = 1. Here k goes from 1 to 2.

Part C. Our table of order n+ 1 is now filled, except for the (1, 0) entry. For this
we apply to each member of Sn a transformation that creates a corresponding, unique
member of Sn+1(1, 0). (Observe that in parts A and B of the proof, no members of
Sn+1(1, 0) were created.)

In this operation we take an arbitrary symmetric net and (1) cut it into halves by
severing the neck at its middle edge, (2) to each half add an edge to increment the
head size, (3) snap on an uncollared neck of size 1 to each half, and (4) reattach. See
Figures 14 and 15 for examples. Note the arrow-gram, which gives a very clean and
simple view, allowing a quick check with the arrow-gram criteria.
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Figure 14. Part C. Splitting the neck. Here (h, k) = (1, 1) becomes (1, 0).
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Figure 15. Part C. Splitting the neck. Here (h, k) = (2, 1) becomes (1, 0).

This procedure defines a bijection fC : Sn ↔ Sn+1(1, 0) (i.e., fC : Sn ↔ S(Cn+1))
and shows that sn+1(1, 0) = sn.

What we have so far demonstrated is that the table of order n + 1 is given by
Figure 16.

sn+1(h, k) h = 1 2 3 4 · · · n+ 1

k = 0 sn sn(1, 0) sn(2, 0) sn(3, 0) · · · sn(n, 0)

1 sn(1, 0) sn(1, 1) sn(2, 1) · · · sn(n− 1, 1)
2 sn(1, 1) sn(1, 2) · · · sn(n− 2, 2)
...

...
...

...
n− 1 sn(1, n− 2) sn(1, n− 1)

n sn(1, n− 1)

Figure 16. The table of values of sn+1(h, k) established by parts A, B, C.

Finally, to employ the inductive hypothesis, we consult Figure 6 and directly sub-
stitute all the values for the sn(h, k) shown in Figure 16, except for sn+1(1, 0) = sn.
But the inductive hypothesis also implies (as we have already shown in the proof of
Theorem M1) that sn = F2n. The result is a table exactly like that of Figure 6, but of
order n+ 1, shown in Figure 7. The proof of the lemma is thereby finished.

Notice that our constructions recursively produce all the members of Sn+1 from
those of Sn. Each symmetric net’s evolution can be traced all the way back to the pri-
mordial case of n = 1, along with a corresponding sequence of mutations and meta-
morphoses of types A, B, and C.

Notice also that a bonus-identity is obtained by summing the diagonals in Figure 6
and applying (1), namely that F2n = n+

∑n
k=1 kF2(n−k).
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3. PATH NETS. Figure 17 shows the 27 path nets for n = 5, the first 8 of which
are symmetric, each group sorted by neck size. There are 2(n − 1) symmetric path
nets for n ≥ 2, which is easy to see by inspecting the symmetric cases—for each
neck size h = 1, 2, . . . , n− 2 there are two possibilities, with one possibility each for
h = n− 1 and h = n.

Figure 17. From Figure M24.

Looking at their arrow-grams makes this especially simple to see. In Figure 18
the neck is shown fully constructed with two other groups yet to be determined. In
order to be the arrow-gram of a path there can only be at most two groups on either
side of the neck, with arrows toward heads only allowed at the ends. To represent
a symmetric path the two groups must be the same size (with no wrap-around) and
the arrows toward heads must be at matching ends of the groups. In the figure this
corresponds to either L1 and R1 or L2 and R2, giving precisely two choices because
the group shown has size greater than 1. That occurs when h ≤ n − 2. When h =
n− 1 there is just one member of the group, so only one choice; when h = n there
are zero members available to form such groups, so again just one choice. Thus we get
2(n− 2) + 1 + 1 = 2(n− 1) possibilities.

Figure 18. For symmetry, add arrows to heads at either L1 and R1 or L2 and R2.

Claim. The number of path nets Pn of the n-antiprism is given by

Pn =
3n2 − 5n+ 4

2
.

To prove the claim, we first show that the number of such nets with neck size h is given
by

Pn(h) =

 1 if h = n
2 if h = n− 1
3j − 1 if h = n− j (1 < j < n)

(1)
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Proof. Let’s build an antiprism path net like so: Start with a path in Gn consisting of
all the 2n band members. Select any subpath H of length 2h; this will be the neck.
This leaves two other subpaths L and R on either side of H (where L or R or both
may be empty), the whole band-path being the concatenation L-H-R. Remove the
edges joining L andR toH and add the two heads to the thusly freed ends ofH . Note
that no lapels are possible in a path net — k1 = k2 = 0 — since a lapel would cause a
head to have valence 3, so we’d no longer have a path. We’ll view the result as a partial
noncentered arrow-gram, for instance like so:

We let the lengths of L and R, respectively, be ` and r = 2n− 2h− `, taking ` ≤ r.
Various types of configurations arise for varous choices of (`, r), gathered as follows.

(00) 1 way: When ` = r = 0, so h = n, then we have only the neck and its two heads,
and there is only one such net for each n.

That’s the first (obvious) case in equation (1).

(0+) 1 way: If ` = 0 and r > 0, thenL is empty and onlyR gets attached to a head. In
this case, rmust be even and the partial diagram shows that there is just one possibility,
as can be seen when the diagram is neck-centered—the two possibilities for attaching
a head (pink) give congruent diagrams:

In all other cases we need to attach both the L and R groups to heads.

(11) 1 way: When ` = r = 1, there is only one net for each n. The blue and green
each get their own head:

The result for h = n− 1 in (1) is now settled, since then l+ r = 2, so the possibilities
are (l, r) = (0, 2) and (l, r) = (1, 1). The cases (0+) and (11) show that there is just
one net for each of those cases.

SUPPLEMENT: NETS OF ANTIPRISMS 9



(1,1+) 2 ways: When ` = 1 and r > 1, there are two nets for each n. Notice that r is
odd; there is only one place (blue) for the L-head to go, but there are two (pink) for
the R-head.

(odd6=odd) 4 ways: Assume ` > 1 is odd and ` < r. Because ` is odd, r must also
be odd. Since both ` and r are odd, each of the ends of L are exposed to the same
head, and both for R are exposed to the other head. Since ` 6= r there is no possibility
of duplication (congruence). Thus there are two possibilities for each group, so four
altogether.

(odd=odd) 3 ways: When ` > 1 is odd and ` = r, we have a symmetric situation.
Although there are two positions for each head, as in the previous case, two of the four
possibilities are congruent (namely, L1-R2 and L2-R1).

(even, even) 2 ways: Finally, when l > 0 is even, there are two possibilities. Since r
will then be even (and positive), the two ends of each L andR are exposed to different
heads, so we must choose one head for each (one green, one blue):

So now we can collect the results for values of n− h. Let j = n− h and note that
`+ r = 2j, so ` takes on all the values in {0, 1, . . . , j}. From what we gathered just

10 c© THE MATHEMATICAL ASSOCIATION OF AMERICA



previously, the number Pn(l, r) of path nets with given (l, r) is

Pn(`, r) =



1 if ` = 0
1 if ` = r = 1
2 if ` = 1, r > 1
4 if ` odd, ` < r
3 if ` odd, ` = r
2 if ` even.

Thus we have (repeating ourselves a bit to gain momentum),

Pn(n) = Pn(0, 0) = 1,

Pn(n− 1) = Pn(0, 2) + Pn(1, 1) = 1 + 1 = 2,

Pn(n− 2) = Pn(0, 4) + Pn(1, 3) + Pn(2, 2) = 1 + 2 + 2 = 5,

Pn(n− 3) = Pn(0, 6) + Pn(1, 5) + Pn(2, 4) + Pn(3, 3) = 1 + 2 + 2 + 3 = 8.

For j even and ≥ 4 we have the following (note the grouping in pairs),

Pn(n− j) = Pn(0, 2j) + Pn(1, 2j − 1)

+ (Pn(2, 2j − 2) + Pn(3, 2j − 3)) + · · ·
+ (Pn(j − 2, j + 2) + Pn(j − 1, j + 1))

+ Pn(j, j)

= 1 + 2 + (2 + 4) + · · ·+ (2 + 4) + 2

= 1 + 2 + 2 + 6

(
j

2
− 1

)
+ 2

= 3j − 1,

while for j odd and at least 5 we have

Pn(n− j) = Pn(0, 2j) + Pn(1, 2j − 1) + Pn(2, 2j − 2)

+ (Pn(3, 2j − 3) + Pn(4, 2j − 4)) + · · ·
+ (Pn(j − 2, j + 2) + Pn(j − 1, j + 1))

+ Pn(j, j)

= 1 + 2 + 2 + (4 + 2) + · · ·+ (4 + 2) + 3

= 1 + 2 + 2 + 6

(
j

2
− 3

2

)
+ 3

= 3j − 1,

and that verifies the claim in (1). Finally, summing over j gives the result:

Pn =
n∑

h=1

Pn(h) =
n−1∑
j=0

Pn(n− j)
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= 1 + 2 +
n−1∑
j=2

(3j − 1) =
3n2 − 5n+ 4

2
. X

4. HEAD COUNTS. In such a combinatorial undertaking as this, where are the bi-
nomial coefficients? In fact, they do make an appearance as the numbers sn,j of nets
N ∈ Sn having j connected “head decorations” emanating from each head of N , i.e.,
paths of triangles starting at the head. (For example, in Figure 19, N1 and N2 have
j = 4 and j = 2, respectively; in the latter those 2 decos on the left side are {3, 8}
and {7}.) It turns out that sn,j =

(
n+j

n−1−j

)
, where 0 ≤ j < n. It must then be true (and

it is well enough known; see [2]) that

n−1∑
j=0

(
n+ j

n− 1− j

)
= F2n. (2)

N1 =
123 45

678 910
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10

2

3

4

5

N2 =
123 45

678 910
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10
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9

4

3

8

5

Figure 19. These are from Figure M20.

The “fine structure” is that for r = h+ k, the number sn,j(r) of nets in Sn(h, k)
having j decorations is

(
n−r−1+j
n−r−j

)
for 1 ≤ j ≤ n− r, while sn,0(n) = 1. This can be

proven by first noting that j can be associated with the length of an integer composition
and using the fact that the number of compositions of m having length ` is given by

∑
(x1,x2,...,x`)∈Cm

∏̀
i=1

xi =

(
m+ `− 1

m− `

)
.

See item (v) in [2], where this formula is proven using generating functions.

5. LABELED NETS. It was not one of our stated goals, but now that we have our
counts, we can also calculate the number of labeled nets of a (labeled) antiprism. By
labeling our antiprisms we simply make all the polygons distinguishable. Actually,
since the polygons would be distinguishable if they were pairwise noncongruent, we

12 c© THE MATHEMATICAL ASSOCIATION OF AMERICA



could simply begin with such an antiprism and count the resulting set of noncongruent
nets, rather than labeling. (We prefer to think of labeled versions, however, because
we are also interested in the symmetric nets, of which there would be none in such a
maximally lopsided scenario. Also, it turns out that we could have done everything,
including the symmetric counts, if we used antiprisms whose bands have congruent
nonequilateral isosceles triangles instead of equilateral ones. That would even make
the situation of n = 3 more natural. There is no combinatorial difference, just an aes-
thetic one, at most.)

For each asymmetric net N (in Tn \ Sn) there are 4n distinct labelings (starting
with a fixed labeling of the antiprism itself, such as ours). This follows from the well-
known fact that the (full) symmetry group of the antiprism has order 4n, but to see
directly why this is so, one can count distinct symmetric motions on the antiprism. (The
following descriptions of the symmetry group might be unnecessary, but are included
for lack of a single reference.)

First, we observe that the antiprism has n distinct symmetries by rotation—call
them Rk—through an angle 2kπ/n (0 ≤ k < n) about an axis v through the centers
of its two n-gons. (The identity element is R0.) If the antiprism is labeled, then each
Rk permutes the labels in a unique way. As an example, the two congruent nets in
Figure 12 are obtained from one another by rotations of an angle π/2 about v when
applied to the 4-antiprism; refer to Figure 9.

Another rotational symmetry F1 is the result of first rotating the antiprism through
a half-revolution about a line parallel to the n-gons and through the center of the
antiprism, and second, if (and only if) n is even, rotating the result by π/n about
the aforementioned axis v. It is clear that F1 flips the top and bottom n-gons, and the
n resulting compositions F1 ◦ Rk give n symmetries, all distinct from the Rk. If F0

represents the identity, then the set {Fj ◦Rk : 0 ≤ j ≤ 1 and 0 ≤ k < n} represents
the 2n members of the rotation group (often denoted Dn) on the antiprism.

Finally, for each of these 2n proper symmetries there is an improper symmetry—
one involving an inversion, which is a point-reflection through its center. Performing
an inversion followed again by a rotation of π/n about v when n is even, results in
a new symmetry I1 that results in a reversal of the orientation of the labels about the
band. If I1 represents this symmetry and I0 is the identity, this gives the full symmetry
group Dnd = {Ii ◦ Fj ◦ Rk : 0 ≤ i ≤ 1, 0 ≤ j ≤ 1, and 0 ≤ k < n}, which has
4n distinct members, each giving rise to a distinct labeling on an (asymmetric) net
N ∈ Tn \ Sn.

A (symmetric) net N ∈ Sn has 2n distinct labelings, since any labeling of such a
net is unaffected by I1.

So if `n is the total number of labeled nets, then we have

`n = 4n(tn − sn) + 2nsn

= 4ntn − 2nsn

= 4n(sn(sn + 1)/2− 2nsn

= 2n(sn)
2

= 2n(F2n)
2.

The number `n can be obtained, at least for any given fixed n, using Kirchhoff’s
matrix-tree theorem [1, p. 203], which says that the number of labeled trees of a graph
is any minor of D − A, where A is the adjacency matrix of the graph and D is the
diagonal matrix of its valences. As an example, for the graph G5 we have the following,
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where the first row/column corresponds to the face labeled 0 in our scheme. In general,
we will have a similar (2n+ 2)× (2n+ 2) matrix for each n—resize appropriately
and replace each 5 in the following matrix with n.

D −A =



5 −1 −1 −1 −1 −1 0 0 0 0 0 0
−1 3 0 0 0 0 −1 0 0 0 −1 0
−1 0 3 0 0 0 −1 −1 0 0 0 0
−1 0 0 3 0 0 0 −1 −1 0 0 0
−1 0 0 0 3 0 0 0 −1 −1 0 0
−1 0 0 0 0 3 0 0 0 −1 −1 0
0 −1 −1 0 0 0 3 0 0 0 0 −1
0 0 −1 −1 0 0 0 3 0 0 0 −1
0 0 0 −1 −1 0 0 0 3 0 0 −1
0 0 0 0 −1 −1 0 0 0 3 0 −1
0 −1 0 0 0 −1 0 0 0 0 3 −1
0 0 0 0 0 0 −1 −1 −1 −1 −1 5


Presumably one can somehow directly compute the minors of such matrices for

variable n, but the author has not succeeded at that. We do know indirectly, though, by
virtue of our results (and Kirchoff’s theorem), that they are equal to `n = 2n(F2n)

2.
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