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Note that a sin B = b sin A by the law of sines. Let 4L = a2 sin2 B = b2 sin2 A and 
consider the function h(x) = x + L/x. A computation shows that h(x) = h(y) if and only 
if (x -y) (L-xy) = 0. Thus, for x (u) = b cos2 a -u and y (u) = a cos2 - -f (u), equality 
of the two expressions (1) and (2) implies that either x (u) = y(u) or x (u)y(u) = L. Note 
that x(u) = y(u) means that u -f (u) = b cos2 a -a cos2 B and, since the function on 
the left is increasing, this equality holds for at most one value of u. For all other values 
of u, the equality x (u)y(u) = L holds, so it holds for all u in IA by continuity. Thus 
(bcos2a - u)(acos2 p- f(u)) = L for all u in IA, which implies that f is a linear 
fractional transformation. 

Write fA,B for f, and use the natural analogies with the definition of fA,B to define 
fB,C: IB -> Ic and fC,A: IC - IA- Set g = fC,A 0 B,C o fA,B- Since g o g is a 
composition of linear fractional transformations, it is itself a linear fractional transformation. 
On the other hand, g is a decreasing homeomorphism of IA, and so it has a unique fixed 
point x in IA. Also, g(0) = UA and g(uA) = 0. Thus 0, x, and UA are three distinct fixed 
points of g o g. A linear fractional transformation with three distinct fixed points is the 
identity, so g o g is the identity, as desired. 

Editorial comment. This problem appeared also as part (a) of problem E3236 in this MONTHLY 

[1987, 877; 1990, 529], where partner circles were called companion incircles. 

Solved also by R. Choisuren (Mongolia), J. Duncan & S. Tabachnikov, D. Einfeld, S. B. Ekhad, J. Fukuta (Japan), S. Haas & 

A. Bliss, J. Lee, J. C. Linders (The Netherlands), J. H. Lindsey II, 0. P. Lossers (The Netherlands), C. R. Pranesachar (India), 

V. Schindler (Germany), R. Stong, I. Talata, A. Tissier (France), and GCHQ Problems Group (U. K.). 

REVIVALS 

Intersecting Curves 

10712 [1999, 166; 2000, 463]. Proposed by Paul Deiermann, Lindenwood University, St. 
Charles, MO, and Rick Mabry, Louisiana State University, Shreveport, LA. Let f (x) and 
g(y) be twice continuously differentiable functions defined in a neighborhood of 0, and 
assume that f (O) = 1, g(0) = f '(O) = g'(0) = 0, f "(0) < 0, and g"(0) > 0. 
(a) For sufficiently small r > 0, show that the curves x = g(y) and y = rf (x/r) have 
a common point (Xr, Yr) in the first quadrant with the property that, if (x, y) is any other 
common point, then xr < x. 
(b) Let (tr, 0) denote the x-intercept of the line passing through (0, r) and (xr, Yr). Show 
that limr,o+ tr exists, and evaluate it. 
(c) Is the continuity of f " and g" a necessary condition for limr,o+ tr to exist? 

Editorial comment. Several solvers argued in part (c), even without assuming the continuity 
of g", that the function g must be increasing on some interval [0, b]. The editorial comment 
published with the solution provided a putative counterexample to that assertion, and the 
solvers who argued in this way were deemed to have provided an incorrect solution. In fact, 
the solvers were correct and the editors erred. Kenneth Schilling provides the following 
simple argument defending the claim. 
Proposition. If g is a twice differentiable function defined in a neighborhood of 0, and if 
g(0) = g'(0) = 0 and g"(0) > 0, then g is increasing on [0, b] for some b > 0. 
Proof. Since g"(0) > 0, we have (g'(y) - g'(0)) /y = g'(y)/y > 0 for all sufficiently 
small y > 0. Hence g'(y) > 0 on (0, b] for some b. It follows that g is increasing in this 
interval, and since g is continuous at 0, g is increasing on [0, b]. 

Here is the corrected list of solvers of the original problem. 

Solved by R. J. Chapman (U. K.), J. H. Lindsey II, 0. P. Lossers (The Netherlands), A. Nijenhuis, K. Schilling, A. Tissier (France), 

and the proposer. 
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