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10807. Proposed by Marc Dele'glise, Universite' Lyon, Lyon, France. For positive parame- 
ters u and v, evaluate 

lim 1 ? 4k) 

10808. Proposed by Enrico Valdinoci, University of Texas, Austin, TX. Prove that the series 
1I00 (cos(nx))n diverges for all x e IR if r < 2 but converges for almost every x E Et 
with respect to Lebesgue measure if r > 2. 

SOLUTIONS 

Intersecting Curves 

10712 [1999, 166]. Proposed by Paul Deiermann, Lindenwood University, St. Charles, 
MO, and Rick Mabry, Louisiana State University, Shreveport, LA. Let f(x) and g(y) be 
twice continuously differentiable functions defined in a neighborhood of 0, and assume that 
f (0) = 1, g(0) = f'(0) = g'(0) = 0, f"(0) < 0, and g"(0) > 0. 
(a) For sufficiently small r > 0, show that the curves x = g(y) and y = rf(x/r) have 
a common point (Xr, Yr) in the first quadrant with the property that, if (x, y) is any other 
common point, then xr < x. 
(b) Let (tr, 0) denote the x-intercept of the line passing through (0, r) and (Xr, Yr). Show 
that limr?o+ tr exists, and evaluate it. 
(c) Is the continuity of f" and g" a necessary condition for limr,o+ tr to exist? 

Solution by Alain Tissier, Monifermeil, France. The conclusions in (a) and (b) remain correct 
even if we do not assume continuity of f" and g". We retain only the continuity of the 
first derivative and the existence and sign of f" and g" at zero. We prove a generalization, 
weakening the hypotheses as follows: Assume that f is a continuous mapping on [0, a] 
witha > 0 and that f(x) 1 - xP +o(xP) as x -0 for some p > 0 and X > 0. Assume 
also that g is a continuous mapping on [0, b] with b > 0 and that g(y) = gyq + 0(yq) as 
y -+ 0 for some q > 1 and ,tu > 0. The conditions on f and g in the problem statement 
imply these hypotheses with p = q = 2, X = -f"(O)/2, and ,u = g"(0)/2. 

(a) With a and b sufficiently small, we may suppose f (x) > 0 on [0, a] and g(y) > 0 on 
(0, b]. Let m > 0 be the maximum of f (x) on [0, a]. For each r > 0, let fr (x) = rf (x/r). 
Then fr is a continuous mapping on [0, ra], fr(x) = r - Xrl-PxP + o(xP), and the 
maximum of fr on [0, ra] is mr. Assume that r < b/m. Then fr(x) < b on [0, ra]. 

The function hr defined by hr(x) = g(fr(x)) - x is defined and continuous on [0, ra], 
and it satisfies hr(0) = g(r) > 0 and hr(ra) = g(rf(a)) - ra. Since g(rf(a)) = O(rq) 
as r -- 0 and since q > 1, we have g(rf (a)) = o(r). Hence there exists a > 0 so that 
hr(ra) < 0 if r < 8. Assume that r < 8. The function hr is continuous on [0, ra], 
hr(0) > 0, and hr(ra) < 0, so by the intermediate value theorem there exists xr > 0 such 
that hr(xr) = 0 and hr(X) > 0 on [0, xr). The curves y = fr(x) and x = g(y) have a 
common point (Xr, Yr) with Yr = fr (Xr) and Xr = g (Yr), and every other common point 
has a larger x-coordinate. 

(b) We show that, in our more general setting, a finite nonzero limit exists if and only if 
i/p + 1/q = 1, and then the limit is 1/(X,uP-1). Since 0 < Xr < ra, we have xr = 0(r) 
as r -+ 0. Hence Yr = r - XrIPx 1 + o(xfP) = 0(r) as r -* 0. We may use this to obtain 

Xr = g(Yr) = ,Lyq + o(yq) = O(rq) and Yr = r -Xrl-Px?p + o(xP) = r + 0(rl-P+Pq) 
as r -- 0. This in turn leads to the further refinement xr = Arq + o(rq) and Yr = 
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r -A gPrl+P(q-l) +o(r l+P(q- )) as r -> 0. An easy computation gives tr = rxr/(r - Yr), 
so 

q+l +_pq r~P+q-Pq 

tr = po(rP+qpq) = rp-1 + o(rp+qpq). 

Thus limr-o+ tr is finite and nonzero if and only if p + q - pq = 0, which may be written 
i/p + 1/q = 1. In this case, we have limr?o+ tr 1/(X[tP-1). With the hypotheses of 
the original problem, the limit is -4/(f"(0)g"(O)). 

Editorial comment. Several contributors asserted incorrectly in part (c) that g must be in- 
creasing in some interval [0, b]. The example g(y) = y2 + 2y4 sin(y-2) with g(O) = 0 
shows that this is false. The special case f(x) = 1l- x2 and g(y) = 1 - 1 y is 
Problem 5 in J. D. E. Konhauser, D. Velleman, and S. Wagon, Which Way Did the Bicycle 
Go?, MAA, Washington, DC, 1996. 

Solved also by A. Nijenhuis and the proposer. 

A Cute Characterization of Acute Triangles 

10713 [1999, 166]. Proposed by Juan-Bosco Romero Mdrquez, Universidad de Valladolid, 
Valladolid, Spain. Given a triangle with angles A > B > C, let a, b, and c be the lengths of 
the corresponding opposite sides, let r be the radius of the inscribed circle, and let R be the 
radius of the circumscribed circle. Show that A is acute if and only if R + r < (b + c)/2. 

Solution by Heinz-Jiirgen Seiffert, Berlin, Germany. The condition A > B > C may be 
weakened to A > B - Cl. The circumradius R satisfies 2R = a/ sin A = b/ sin B = 

c/ sin C, so A + B + C = rr implies 

b +c B?+C B -C A B -C 
= R (sin B + sin C) = 2R sin + cos C 2R cos - cos 

2 2 2 2 2 

The inradius is r = 4R sin(A/2) sin(B/2) sin(C/2), so 

r = 2R sin (cos2 -cos 2 )= 2R sin (cos 2 -sin 2) 

= R(2 sin cos B -sin2 + cos 2 

Thus, 

b?(c A AX ( B-C A AX 
R+r- =R sin--cos 2 cos -sin--cos- I. 

2\\ 2 21 o2 2 2/ 

But 
B-C * A B-C sir-A .B .C 

cos 2 -sin-= cos - -cos = 2 sin-sin- 
2 2 2 2 2 2' 

so we have 

R + r- b =R (sinj--cos2) (2sin - sin - + cos 2 -cos 2) 

The condition A > B - Cl implies that cos ((B - C)/2) > cos(A/2), so the last factor 
on the right-hand side is positive. It follows that R + r - (b + c)/2 < 0 if and only if 
sin(A/2) < cos(A/2), which occurs if and only if A is acute. 

Solved also by Z. Ahmed & M. A. Prasad (India), S. Amighbech (France), S. Andras (Romania), J. Anglesio (France), R. J. Chapman 

(U. K.), D. Donini (Italy), J. Fukuta, M Hajja (U. A. E.), N. Heideman (South Africa), A. Kalakos (Greece), M. S. Klamkin (Canada), 

J. H. Lindsey II, 0. P. Lossers (The Netherlands), G. Peng, J. S. Robertson & J. Rob, V. Schindler (Germany), I. Sofair, T. V. Trif 

(Romania), GCHQ Problems Group (U. K.), and the proposer. 
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