Proof of Fact 6. f(y) has a unique maximum for $0 \le y \le 1$, since f(0) = f(1) = 0407 and f''(y) < 0 on this interval. By showing f'(1/2) > 0, it will follow that this maximum 100 occurs for 1/2 < y < 1. 100

800

-01-s

C)

400

-

-

1

-

-

100

-

-

100

-

10 -

£25

-

-

10

-873

1

65 80% I 20

80

-

-

63

-

4.10

-

103

402

6.3

--

-

810 201 10.0

We've already noted (implicitly) the dependence of α on y, but let's set y = 1/2 in (B) 404 100 to get -

$$in(\alpha + \theta) = (\sin \theta) \left(1 + \frac{1}{4r}\right),$$

and continue to write α for the specific value of α so obtained (which still depends on the 61.0 605 fixed values of θ and r). Using the fact that $\sec^2 \alpha > \sec \alpha$, our formula for f'(y) from a previous napkin gives 100

$$f'(1/2) > -\tan \alpha + \frac{1}{4r} \sec \alpha \sin \theta \sec(\alpha + \theta)$$

= $\sec \alpha (-\sin \alpha + (\sin(\alpha + \theta) - \sin \theta) \sec(\alpha + \theta))$
= $\sec \alpha \sec(\alpha + \theta) \cdot \mathcal{L},$

-12 where $\mathcal{L} = \sin(\alpha + \theta) - \sin \alpha \cos(\alpha + \theta) - \sin \theta$. We're done if $\mathcal{L} > 0$. -We note that $\mathcal{L} = 0$ for $\alpha = 0$, so we'll be done if $\frac{\partial \mathcal{L}}{\partial \alpha} > 0$. And indeed, 403

S

$$\frac{\partial \mathcal{L}}{\partial \alpha} = \cos(\alpha + \theta) - \cos\alpha \cos(\alpha + \theta) + \sin\alpha \sin(\alpha + \theta)$$

> $\cos(\alpha + \theta) - \cos(\alpha + \theta) + \sin\alpha \sin(\alpha + \theta)$
= $\sin\alpha \sin(\alpha + \theta)$
> 0.