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Sets which are Well-Distributed and Invariant Relative to All

Isometry Invariant Total Extensions of Lebesgue Measure

1 Introduction

In this paper we discuss subsets A of the real line having the property

µ(A ∩ J) = α µ(J), (1)

for any interval J of the real line, where 0 < α < 1 and µ is an isometry-invariant extension
of the usual Lebesgue measure λ on the real line. In [18], Simoson considers the notion of
a set having this property, but with µ replaced by the Lebesgue outer measure λ∗. Simoson
calls such a set a comb, and goes on to show that no comb exists. The purpose of this paper
is to show that such sets do exist if the outer measure is replaced by suitable extensions of
the Lebesgue measure. In particular, for any α ∈ (0, 1), there are sets A, which we shall call
α-shadings of R, or combs of shade α, which have the property that for any finitely-additive
isometry invariant extension µ of λ to 2R, one has

µ(A ∩ E) = α λ(E),

for any Lebesgue measurable set E. In fact, many different types of such sets are shown to
exist, some having appeared in the literature as examples of non-Lebesgue measurable sets.
For instance, one of the classic examples of a non-measurable set is discussed by Halmos [6],
and many of the sets in this paper are generalizations of this set. Another set is due to
Sierpiǹski [16], which was shown by Hewitt and Stromberg [8] to satisfy λ∗(A∩ J) ≥ 1

2
λ(J),

for intervals J ⊂ R. Other results concerning some of these sets have been of the form
λ∗(A ∩ J) = λ(J), and the reader is referred to Pu [13] and Simoson [19]. The notion of
an α-shading will then be generalized to that of an f -shading, where f is any continuous
function mapping R into the closed unit interval [0, 1], and these sets will also be shown to
exist.

We consider sets having property (1) to be “well-distributed” in the sense of W. Ru-
din [14], who used the term to describe certain Lebesgue measurable sets A of reals having
the property

0 < λ(A ∩ V ) < λ(V )

for every nonempty open set V ⊂ [0, 1]. The use of the term “shade” is a heuristic one, which
is suggested by property (1) and the expression “shades of grey”, where we can consider a
set to be black if α = 1, white if α = 0, and grey if 0 < α < 1. What makes these sets
especially interesting is that the parameter α associated with the shade does not depend on
the particular extension of the Lebesgue measure (so long as it is an isometry invariant total
or universal extension of λ, i.e., an extension to the entire power set of R), so such sets have a
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certain invariance property. The Soviet mathematician A.B. Harazishvili has done extensive
investigation into countably-additive extensions of Lebesgue measure, and invariance relative
to such measures. While most of this paper concerns itself with finitely-additive extensions,
we will discuss some relations to invariance in countably-additive extensions.

We shall construct several types of shadings, including shadings that have the “Bernstein
property”, where the set and its complement intersect every uncountable closed subset of
R. We will also explore some other interesting properties of these sets, and suggest some
problems for future research.

2 Notation

In what follows, Z will denote the set of integers, N the set of positive integers, R the real
numbers, Q the rationals in R, H the irrationals in R. We let λ and λ∗ denote the Lebesgue
measure and outer measure, respectively. For a set X, 2X denotes the power set of X, that
is, the set of subsets of X. We denote by M the set of all finitely-additive extensions of λ to
2R that are isometry invariant, that is, if µ ∈M, then µ(A) = µ(B) whenever A and B are
isometric. These measures are known to exist as a consequence of the Hahn-Banach theorem
(see, for example, [12]). Since so much of what we do in this paper relies on the properties
of measures on disjoint unions of sets, we use the symbol

⊎
to emphasize disjoint unions,

that is, X ] Y denotes the set X ∪ Y , where X ∩ Y = ∅. The complement of a set X ⊂ R
is denoted by Xc. The symmetric difference of two sets X and Y is denoted by X 4 Y . For
two sets X and Y , we write X

.
= Y if card (X 4 Y ) < 2ℵ0 .

For X ⊂ R, Y ⊂ R, and t ∈ R, we define X + t, X + Y , and tX as follows:

X + t = {x + t : x ∈ X},

tX = {tx : x ∈ X},
X + Y = {x + y : x ∈ X, y ∈ Y }.

If S ⊂ R, we denote by χS the usual characteristic function of S.
We will have occasion to make use of the binary, or base-2 expansion of real numbers.

For x ∈ [0, 1] we shall write
x = (.x1x2x3 · · ·)2

when

x =
∞∑

i=1

xi2
−i,

where each xi is either 0 or 1.

3 Definition and Existence of Shadings

We start by stating two well known facts that can be found in [6, p.69].

Lemma 3.1 If h ∈ H, then the set hZ + Z is dense in R.
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Lemma 3.2 For h ∈ H, the relation ∼ given by

x ∼ y ⇔ x− y ∈ hZ + Z

is an equivalence relation.

Definition 3.3 The above equivalence relation partitions R into distinct equivalence classes,
so by the axiom of choice we can choose one element γ from each such class to form a set
Γ. For each h ∈ H, we let E(h) denote the class of all the different index sets that can be so
constructed. The equivalence class containing γ is γ + hZ + Z and we have

R =
⊎

γ∈Γ

(γ + hZ + Z).

Definition 3.4 Let Γ ∈ E(h). For M ⊂ Z, we define

K(h, Γ; M) =
⊎

γ∈Γ

(γ + hM + Z) = Γ + hM + Z.

We will abbreviate this to K(M) when h and Γ ∈ E(h) are fixed.
For a ∈ N, b ∈ Z, we define

Ma,b = aZ + b

and
Ka,b(h, Γ) = K(h, Γ; Ma,b).

For h and Γ fixed, we denote the latter by Ka,b.

We note some simple, yet fundamental properties of the sets Ka,b in the following theorem,
the proof of which is omitted.

Theorem 3.5 Let h and Γ ∈ E(h) be fixed. The following properties are satisfied:

1) K(Z) = R,

2) K(M1 ]M2) = K(M1) ]K(M2),

3) Ma,b = Ma,b mod a, ∀ a ∈ N, b ∈ Z,

4)
⊎

0≤b<a Ma,b+c = Z, ∀ a ∈ N, c ∈ Z

5)
⊎

0≤b<d Mcd,cb = Mc,0, ∀ c, d ∈ N,

6) Ka,b + (ma + c)h + n = Ka,b+c, ∀ a ∈ N, b, c,m, n ∈ Z.

Property 6) shows that the set Ka,b is invariant under a dense set of translates, namely,
those in ahZ + Z (which is dense in R by lemma 3.1). In [7], a set which is invariant under
a group G of isometries is called G-invariant. In [19], Simoson defines an Archimedean set
to be a set A such that A + r = A for densely many r ∈ R, so we see that Ka,b is an
Archimedean set. He then shows that if such a set A has positive Lebesgue outer measure,
then λ∗(A ∩ J) = λ(J) for any interval J ⊂ R. In [18] he states,
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“It would seem plausible that some exotic manipulation of the Cantor set or some
wild invocation of the axiom of choice ought to yield a comb. But no such scheme
exists.”

We will see, however, that all of the examples he gives of Archimedean sets in [19] are, in
our sense, combs. In fact all of the examples of Archimedean sets in this paper will be seen
to be combs, causing us to wonder whether or not every Archimedean set is necessarily a
comb (see Sec. 6).

We first show that the sets Ka,b are combs, or in our terminology, (1/a)-shadings.
Henceforth, unless we explicitly state otherwise, h ∈ H and Γ ∈ E(h) are fixed.

Theorem 3.6 Let µ ∈M, and let a ∈ N. Then for any interval J ⊂ R,

µ(Ka,b ∩ J) =
1

a
λ(J), ∀ b ∈ Z.

Proof. Let J be any nonempty, bounded interval in R, and let 0 < ε < µ(J). Now,
for each c = 1, 2, . . . , a − 1, we have that ahZ + Z + ch is dense in R, so we can choose
rc ∈ (0, ε)∩ (ahZ+Z+ch). Then Ka,b +rc = Ka,b+c, by property 6) of Theorem 3.5. Letting
r0 = 0, and applying properties 1), 2) and 4) of Theorem 3.5, we have

a−1⊎

c=0

(Ka,b + rc) =
a−1⊎

c=0

Ka,b+c

=
a−1⊎

c=0

K(Ma,b+c)

= K(
a−1⊎

c=0

Ma,b+c

= K(Z) = R.

Let J+ = J ∪ (J + ε) and J− = J ∩ (J + ε). Then

J− ⊂ J + rc ⊂ J+, ∀ c = 0, 1, 2, . . . a− 1,

and so for each such c,

µ(Ka,b ∩ J) = µ((Ka,b ∩ J) + rc)

= µ((Ka,b + rc) ∩ (J + rc))

= µ(Ka,b+c ∩ (J + rc)),

hence,

a µ(Ka,b ∩ J) =
a−1∑

c=0

µ(Ka,b+c ∩ (J + rc))
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≤
a−1∑

c=0

µ(Ka,b+c ∩ J+)

= µ(
a−1⊎

c=0

(Ka,b+c ∩ J+))

= µ((
a−1⊎

c=0

Ka,b+c) ∩ J+)

= µ(R ∩ J+)

= λ(J) + ε.

Similarly, using J− in place of J+,

a µ(Ka,b ∩ J) ≥ λ(J)− ε.

Since ε is arbitrary, it follows that

µ(Ka,b ∩ J) = (1/a)λ(J).

2

We note that the only isometry invariance of µ required in the above proof was the
translation i.e., that µ(A) = µ(A + t) for all t ∈ R.

The above theorem motivates the following definition.

Definition 3.7 If α ∈ [0, 1] and µ(A∩J) = α λ(J) for all µ ∈M and all bounded intervals
J ⊂ R, then we call A an α-shading of R, and write sh(A) = α.

Using the finite-additivity of µ, it is easy then to construct combs of any rational shade.
If p, q ∈ N with p < q, then for

A =
p⊎

i=1

Kq,bi
,

where {b1, b2, . . . , bp} is any set of distinct numbers in {0, 1, . . . q− 1}, we have that sh(A) =
p/q. The obvious question is then, can combs be constructed having irrational shade? The
affirmative answer to this question follows as a corollary to the next simple, yet fundamental
theorem, which asserts that despite the fact that µ is only finitely-additive, the shades of
our combs are countably-additive under µ.

Theorem 3.8 If {xi}∞i=1 is a sequence in (0, 1) such that

∞∑

i=1

xi = 1,

and {Ai}∞i=1 is a pairwise disjoint sequence of combs such that

sh(Ai) = xi, for each i ∈ N,
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then for any M ⊂ N, the set
AM :=

⊎

i∈M

Ai

is a comb, and
sh(AM) =

∑

i∈M

xi.

Proof. Without loss of generality, we may assume that
⊎

i∈N Ai = R. We let

xM =
∑

i∈M

xi,

and let A = AM and B = R \AM . Let J be any bounded nonempty interval in R, let ε > 0,
and choose n ∈ N such that ∑

i∈M,i≤n

xi > xM − ε.

Then we have

µ(A ∩ J) ≥ µ(
⊎

i∈M,i≤n

Ai ∩ J)

=
∑

i∈M,i≤n

xi λ(J)

> (xM − ε)λ(J),

and since ε was arbitrary,
µ(A ∩ J) ≥ xM λ(J). (2)

Similarly,
µ(B ∩ J) ≥ (1− xM)λ(J). (3)

But if equality does not hold in either (2) or (3), then

λ(J) = µ(A ∩ J) + µ(B ∩ J)

> xM λ(J) + (1− xM)λ(J)

= λ(J),

which is a contradiction. Hence

µ(AM ∩ J) = xM λ(J),

which proves the theorem. 2

Corollary 3.9 For each x ∈ (0, 1), there exists a comb with shade x.
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Proof. Let {Ai}∞i=1 be a sequence of disjoint combs such that sh(Ai) = 2−i for each i ∈ N
(for example, we can take Ai = K2i,2i−1−1). We write x as a binary expansion,

x =
∞∑

i=1

zi2
−i = (.z1z2z3 · · ·)2,

let M = {i ∈ N : zi = 1},
xi = 2−i,

and apply Theorem 3.8. The comb A =
⊎

i∈M Ai has shade x. 2

Remark 3.10 It is clear that the manipulation of the combs Ka,b basically involves exploit-
ing the properties of the underlying sets of integers Ma,b. Intuitively, we think of Ma,b as
being “every a’th integer, beginning with b,” and splitting Z into a “copies”, i.e. translates,
of Ma,b (see property (4) of Theorem 3.5). Thus each translate occupies a fraction 1/a of the
entire set of integers. This is the simplest example of a set of integers with so-called natural
or asymptotic density, which is usually defined (for positive integers) by

D(M) = lim
n→∞

1

n

n∑

i=1

χM(i),

if the limit exists (see, for example, [11]). One might expect the shade of K(M) to coincide
with the density of M in Z, if it exists, but this connection is by no means obvious. For now,
we simply note that each µ ∈ M induces a finitely-additive isometry invariant measure νµ

on 2Z as follows:
νµ(M) := µ(K(M) ∩ I),

where I is any unit interval in R. These measures coincide with the measure on the
Carathéodory extension Dµ of D0 in the well-known paper of R.C. Buck (cf. [1, p.562]),
where D0 is the algebra of subsets of Z generated by all the finite subsets of Z and all subsets
of Z that are arithmetic progressions. In that paper, it is shown that the quasi-progressions

{[αn + β] : n ∈ Z},

where α > 1 is irrational and [ ] denotes the greatest integer function, are not in the class
Dµ, but have density (1/α). One can readily show that this number is also the νµ-measure
of such a quasi-progression, and so these measures agree with the density on at least certain
classes of subsets of Z.

Although Buck’s measures were defined on N, all of the basic results go through for
integers. However, one problem that comes up in our context is the following: What is
sh(K(N)) ? It is easy to verify that if M ⊂ Z is finite, then sh(K(M)) = 0, and so we have

sh(K(−N)) + sh(K({0})) + sh(K(N)) = sh(K(Z)) = 1,

so that
sh(K(−N)) = 1− sh(K(N)).
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Now, since we are dealing with isometry invariant measures, and since −N is isometric to
N, it is tempting to conclude that

sh(K(−N)) = sh(K(N)) =
1

2
. (4)

But this is not at all clear, since K(−N) need not be isometric to K(N). However, it can
be shown that Γ ∈ E(h) can be chosen such that Γ is “almost symmetric”, in fact, such that

{γ ∈ Γ : −γ 6∈ Γ} =

{
−1

2
,
h

2
,
1

2
− h

2

}
. (5)

The details are rather tedious, but it is basically a matter of starting with any Γ0 ∈ E(h),
and then for each γ ∈ Γ0 (except those equivalent to an element of the right hand side
of (5)), replace with −γ the element of Γ0 which is equivalent to −γ, to form a new index
set Γ ∈ E(h). For such Γ, one can then show that (4) is satisfied.

We conclude this section with an easy and obvious theorem, which allows us to pass
from intervals to Lebesgue measurable sets. We include the proof, since we are dealing with
countable collections of intervals, but an only finitely-additive measure.

Theorem 3.11 Let α ∈ (0, 1) and let A be an α-shading of R. Then for any Lebesgue
measurable set E ⊂ R,

µ(A ∩ E) = α λ(E).

Thus, A “combs” not only intervals, but all Lebesgue measurable sets.

Proof. Let E be any Lebesgue measurable set having finite Lebesgue measure. Let ε > 0
and choose {Ji}∞i=1 to be a sequence of intervals in R such that E ⊂ ⋃∞

i=1 Ji and
∑∞

i=1 λ(Ji) <
λ(E) + ε. Let n be a positive integer such that

∑∞
i=n+1 λ(Ji) < ε. Then we have

µ(A ∩ E) ≤ µ(
∞⋃

i=1

(A ∩ Ji))

≤
n∑

i=1

µ(A ∩ Ji) + µ(
∞⋃

i=n+1

(A ∩ Ji))

≤ α
n∑

i=1

λ(Ji) +
∞∑

i=n+1

λ(Ji)

= α
∞∑

i=1

λ(Ji) + (1− α)
∞∑

i=n+1

λ(Ji)

< α(λ(E) + ε) + (1− α)ε

= α λ(E) + ε.

It follows that
µ(A ∩ E) ≤ α λ(E). (6)

8



By considering the (1− α)-shading, Ac, as in the previous theorem, we also have that

µ(Ac ∩ E) ≤ (1− α)λ(E). (7)

Hence, if either equality in (6) or (7) fails, then as in Theorem 3.8, we get a contradiction.
The theorem is thus proved for λ(E) < ∞. It follows easily for the infinite case, for if η > 0,
we can choose N > 0 sufficiently large that λ([−N, N ] ∩ E) > η/α, so that

µ(A ∩ E) ≥ µ(A ∩ [−N,N ] ∩ E) = α λ([−N, N ] ∩ E) > η,

that is, µ(A ∩ E) = ∞. 2

4 Some Examples of Shadings

In section 3 we saw one type of a comb, which is based on disjoint unions of combs of the
type Ka,b. The combs Ka,b are, in turn, formed from countable unions of translates of the
index set Γ. The set Γ is a classic example of a Lebesgue nonmeasurable set, as seen in [6,
p.69], where it is then used to construct K2,0, which is shown to have the property

λ∗(K2,0 ∩ E) = λ(E),

for every Lebesgue measurable set E.
It turns out that other well-known examples of Lebesgue nonmeasurable sets are, in fact,

combs.

Example 4.1 In [16], Sierpiǹski constructs a set C of irrationals, such that, if x + y is
rational, then exactly one of {x, y} is in C. In [8], it is shown that if J ⊂ R is an interval,
then

λ∗(C ∩ J) ≥ 1

2
λ(J). (8)

Using essentially the same method as implemented in [8], it can easily be shown that

µ(C ∩ J) =
1

2
λ(J), (9)

for any µ ∈ M. We omit the details here, merely noting that the inequality in (8) comes
from the subadditivity of λ∗, which is replaced by equality in (9), due to the finite-additivity
of µ. Also, in this example, it is not enough for µ to be merely translation invariant.

The above example is also found in [19] as an example of an Archimedean set (a dense set
of translators is Q). The following two examples are also found in [19].

Example 4.2 Let V denote a Hamel basis for R over the rationals Q. Fix v0 ∈ V (we will
assume v0 > 0) and let

W =

{
n∑

i=1

rivi : ri ∈ Q, vi ∈ V , vi 6= v0, n ∈ N

}
.
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Then
R =

⊎

r∈Q

(W + rv0),

and W is Archimedean, since

W = W + rv, ∀ r ∈ Q, v ∈ V \ {v0}.

If µ ∈M, we easily have (using only translation invariance) that

µ(W ∩ J) = 0,

for any bounded interval J . To see this, assume that J is a bounded nonempty interval and
that

µ(W ∩ J) = tλ(J), for some t ∈ (0, 1].

Choose k ∈ N such that kt > 1, and let 0 < ε < (kt− 1)λ(J)/v0. Choose {r1, r2, . . . , rk} to
be distinct elements of Q ∩ (0, ε), and let J+ =

⋃k
i=1(J + riv0). Then

ktλ(J) = kµ(W ∩ J)

=
k∑

i=1

µ((W + riv0) ∩ (J + riv0))

≤
k∑

i=1

µ((W + riv0) ∩ J+)

= µ(
k⊎

i=1

(W + riv0) ∩ J+)

≤ λ(J+) < λ(J) + εv0 < ktλ(J).

This contradiction establishes the claim. We note that this example shows that a set of
positive λ∗-measure can have shade zero.

Problem 1 What can be said about µ(W ), where W is as in Example 4.2 ?

Example 4.3 Let Qodd denote the set of rationals having odd denominator when expressed
in lowest terms. We define an equivalence relation ∼ on R by

x ∼ y ⇔ x− y ∈ Qodd.

From each equivalence class, choose an α and let Bα denote those members x from this
equivalence class for which x− α is of the form p/q, where p/q is in lowest terms, and both
p and q are odd. Let B be the union of all such Bα. Then B is a 1

2
-shading of R. To verify

this claim, observe that for any odd p and q, we have

Bc + p/q = B.
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Let J be any bounded interval, choose ε ∈ (0, λ(J)), let J+ = J∪(J +ε), and choose p and q
odd such that p/q ∈ (0, ε). Then using only the translation invariance of µ, we have that

λ(J) = µ(B ∩ J) + µ(Bc ∩ J)

= µ(B ∩ J) + µ(B ∩ (J + p/q))

≤ 2 µ(B ∩ J+)

< 2 (µ(B ∩ J) + ε)

and similarly,
λ(J) < 2 (µ(Bc ∩ J) + ε).

The claim follows. Also, this example can easily be generalized to produce similar combs of
any rational shade.

The following easy lemmas will facilitate the next examples.

Lemma 4.4 Let W be any set of reals such that card W < 2ℵ0 . Then for any k ∈ N, there
exist reals r1, r2, . . . rk such that the sets W, W + r1, W + r2, . . . W + rk are pairwise
disjoint. Moreover, if S is any subset of R with card S = 2ℵ0 , the translators r1, . . . rk can
be chosen from S.

Proof. Let card S = 2ℵ0 . We observe that

card (W −W ) ≤ (card W )(card W ) < 2ℵ0 ,

and choose r1 ∈ S \ (W −W ). Clearly then, W ∩ (W + r1) = ∅. Next let W1 = W ∪ (W + r1)
and choose r2 ∈ S \ (W1−W1) and we have that the sets W , W +r1 and W +r2 are pairwise
disjoint. This process can be continued indefinitely, proving the lemma. 2

Lemma 4.5 Let W be any set of reals such that card W < 2ℵ0 . Then for any µ ∈ M and
any bounded interval J , we have

µ(W ∩ J) = 0.

As a corollary, it follows that if A
.
= B, then µ(A ∩ J) = µ(B ∩ J).

Proof. Assume that µ(W ∩ J) = tλ(J) for some t ∈ (0, 1], choose k ∈ N such that kt > 1,
let 0 < ε < (kt− 1)λ(J), choose r1, r2, . . . rk as in the previous lemma and proceed as in
Example 4.2. 2

In [17], Sierpiǹski constructs a set A of Lebesgue measure zero with the property that
each translate of A is equal to A, except at countably many points (assuming the continuum
hypothesis). Sets of this type are also discussed by Erdös in [3]. In [7], Harazishvili constructs
a set with similar properties, and this set serves as our next example.

Example 4.6 There exists a subset A of the line with the following properties:

11



a) card (A∩F ) = card (Ac∩F ) = 2ℵ0 for every closed set F with positive Lebesgue measure,

b) (A + t)
.
= A, for each t ∈ R, and

c) fs(A)
.
= Ac, for each s ∈ R,

where fs(x) := 2s − x is the reflection of the point x relative to s. We claim that A is a
comb with shade 1

2
. To see this, let J be any nonempty bounded interval, and choose the

unique s ∈ R such that fs(J)
.
= J . In view of property c), we must have

fs(A ∩ J) = fs(A) ∩ fs(J)
.
= Ac ∩ J,

and so,

2 µ(A ∩ J) = µ(A ∩ J) + µ(fs(A ∩ J))

= µ(A ∩ J) + µ(Ac ∩ J) (by Lemma 4.5.)

= µ(J),

and our claim follows.
Incidentally, it might be noticed that we did not use properties a) or b). In fact, all that

is needed is a weakened form of c), wherein fs(A)
.
= Ac for densely many s ∈ R.

The set A from the previous example could be called “almost-Archimedean,” in that
A

.
= A + t for densely many t. The fact that this set of translators is not only dense in R,

but is all of R, seems to be a trade-off — if we weaken the requirement that A = A + t for
densely many t, and instead require only that A

.
= A + t, for densely many t , then we can

have uncountably many such t. On the other hand, as was pointed out in Example 4.2, one
can have uncountably many t such that A = A + t, if A has zero shade. The question of
whether such restrictions are necessary we answer in the negative by means of the following
examples.

Example 4.7 Let α ∈ (0, 1). We shall construct a set A with the following properties:

a) A is Archimedean,

b) (A + t) = A for 2ℵ0 many t ∈ R, and

c) A has shade α.

Using the notations of Example 4.2 it seems plausible that a subset QA of the rationals might
be chosen such that A := W + QAv0 is a comb of positive shade, since R = W + Qv0. This
turns out to be the case. In fact, let

QA = Q ∩ ⋃

m∈Z

[m,m + α).

It is clear that A + w = A for each w ∈ W , and that card W = 2ℵ0 . If α is equal to 1/q for
some q ∈ N, then it is easy to see, using methods previously employed, that

q−1⊎

k=0

(A +
k

q
v0) = R,
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whence sh(A) = 1/q. We can then easily pass to α of the form p/q, where p, q ∈ N. Finally,
each α ∈ (0, 1) is contained in an arbitrarily small interval with rational endpoints, say
α ∈ (p/q, (p + 1)/q), from which it is easily shown that sh(A) ∈ (p/q, (p + 1)/q), and the
claim follows. We note in passing that this also shows that an Archimedean set can have
irrational shade. Also, this set has the interesting property of being a nontrivial set such
that {A + t : t ∈ R} is only a countable family of sets.

Example 4.8 Let A = W + QAv0, where QA = Q ∩ (0,∞), and the notation is as in the
previous example. Then

a) A is Archimedean,

b) (A + t) = A for 2ℵ0 many t ∈ R,

c) sh(A) = 1
2
, and

d) sh(A4 (A + t)) = 0, ∀ t ∈ R.

The proof is straightforward and we omit it.

Remark 4.9 We note that a set A having the property

A + t
.
= A, ∀ t ∈ R (10)

can also be Archimedean. In fact, let A be any set satisfying (10). We define the set B by

B =
⋃

q∈Q

(A + q) = A + Q.

It is easy to see that B satisfies (10), and that B + q = B, ∀ q ∈ Q, so B is Archimedean.
Also, if A is comb with shade α, then so is B, since A

.
= B (by Lemma 4.5).

5 Some Properties of Shadings

From the construction of the combs Ka,b, we can see that if r1, r2, . . . , rn are rationals in
(0, 1) such that r1 + r2 + · · · + rn = 1, then there exist disjoint combs C1, C2, . . . , Cn such

that
n⊎

i=1
Ci = R and sh(Ci) = ri for each i. We simply write ri = pi/q, where 1 ≤ pi < q

for each i, and q is a common denominator, and then consider disjoint unions of pi combs
having shade 1/q. The question immediately arises as to whether the ri can be irrational,
and we provide an affirmative answer with the following.

Theorem 5.1 Given {xi}∞i=1 ⊂ (0, 1) such that
∞∑
i=1

xi = 1, there exist disjoint combs {Ci}∞i=1

such that sh(Ci) = xi for each i ∈ N.
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Proof. We again make use of the binary expansion of each xi, with the condition that each
expansion is non-terminating, e.g., 1

2
= (.011111 . . .)2. We write

x1 = (.x11x12x13 · · ·)2 =
∞∑

j=1
x1j2

−j

x2 = (.x21x22x23 · · ·)2 =
∞∑

j=1
x2j2

−j

...

xi = (.xi1xi2xi3 · · ·)2 =
∞∑

j=1
xij2

−j

...

where each xij = 0 or 1. For each j ∈ N, let Lj = {(i, j) : xij = 1}. Since each Lj is a

finite set, we can order
∞⋃

j=1
Lj by listing the elements of L1, followed by those of L2, etc. Let

L = {L1; L2; · · ·} denote this concatenation.
We now construct a disjoint family of sets of integers corresponding to the elements of

L. For each k ∈ N, let α(k) denote the k’th element of L, and let pk be the power of 2
corresponding to α(k), i.e., pk = 2j if and only if α(k) ∈ Lj. Then p1 ≤ p2 ≤ p3 ≤ · · · and
we let N1 = Mp1,0 (see def. 3.4). For k > 1, define Nk recursively by letting nk be the first
positive integer not contained in N1 ∪N2 ∪ · · · ∪Nk−1, and letting Nk = Mpk,nk

. It is easily

verified that the Nk are well-defined and that they are pairwise disjoint, with
∞⊎

k=1
Nk = Z.

Then the combs K(Nk) are pairwise disjoint, with
∞⊎

k=1
K(Nk) = R, and sh(K(Nk)) = 1/pk.

Finally, for each fixed i ∈ N, let

Ci =
⊎{K(Nα−1(i,j)) : j ∈ N, xij = 1}.

By Theorem 3.8, it is clear that sh(Ci) = xi, and our claim is proved.

We note that the theorem is obviously true for finite sums
N∑

i=1
xi = 1, as well as sums less

than one. 2

In taking the union of disjoint combs to form new combs, we see that these unions can
be thought of as having the original disjoint combs as subcombs. With the exception of
Example 4.1, the author has found fairly easy means of forming subcombs of the examples
found in this paper, but it is not at all clear that an arbitrary comb has nontrivial subcombs,
and we will have to leave this question unanswered for now:

Problem 2 If A is a comb with sh(A) = a, and b is a real number in the open interval
(0, a), does there exist a comb B ⊂ A such that sh(B) = b ? (It suffices, in view of the proof
of Corollary 3.9, to find B with sh(B) = 1

2
a.)

The previous theorem does give us an easy way to construct examples of sets A and B
having the property described in Problem 2. For 0 < b < a < 1, we need only construct
disjoint combs B and C of shades b and a− b, respectively, and let A = B ∪C. We can also
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construct systems of combs having other inclusion properties. For instance, for 0 < x < 1
2
,

we can construct combs A and B each with shade 1
2

and such that A∩B is a comb of shade x.
We simply let D1, D2, and D3 be disjoint combs of shades 1

2
− x, 1

2
− x, and x, respectively,

and then let A = D1 ∪ D3 and B = D2 ∪ D3. We can easily generalize this to systems of
combs having any “admissible” intersection properties, by means of the following corollary
to the previous theorem.

Corollary 5.2 Let n ∈ N and let {0, 1}n denote the set of 2n n-tuples with coordinates
either 0 or 1. Let

v : {0, 1}n → [0, 1]

be such that ∑

x∈{0,1}n

v(x) = 1.

Then there exist combs {Ci}n
i=1 such that the following holds. If

x = (x1, x2, . . . , xn) ∈ {0, 1}n,

let

L(x) =
n⋂

i=1

Li(x),

where

Li(x) =

{
Ci if xi = 1
R \ Ci if xi = 0.

Then L(x) has shade v(x).
The proof is easy, and we omit it.

We illustrate the above corollary with the following two examples.

Example 5.3 We construct combs C1, C2, C3 with shades 2/5, 2/5, 4/5, respectively, such
that the sets C1 ∩C2, C1 ∩C3, C2 ∩C3, C1 ∩C2 ∩C3 are combs with shades 1/10, 2/5, 3/10,
and 1/10, respectively.

In the notation of the above corollary, we let n = 3 and

v(0, 0, 0) = 1/10 v(0, 0, 1) = 1/5 v(0, 1, 0) = 1/10 v(0, 1, 1) = 1/5
v(1, 0, 0) = 0 v(1, 0, 1) = 3/10 v(1, 1, 0) = 0 v(1, 1, 1) = 1/10.

Example 5.4 Let v1, v2, . . . , vn be reals in (0, 1). Then there exist combs C1, C2, . . . , Cn

with the following “probabalistic independence” property: For any set M of distinct integers
from {1, 2, . . . , n},

sh(
⋂

j∈M

Cj) =
∏

j∈M

vj.

This follows from the previous corollary with v : {0, 1}n → [0, 1] given by

v(x) =
n∏

i=1

yi, where yi =

{
vi if xi = 1
1− vi if xi = 0.
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We should also mention that one need not be restricted to finite collections of combs.
Here is a denumerable collection with an independence property:

Example 5.5 We construct a sequence of combs {Ci}∞i=1 such that sh(Ci) = 1
2

for each i,
and such that the intersection of any n of these sets or their complements has shade 2−n.

For each i, define Ni ⊂ Z by

Ni =
2i−1−1⊎

j=0

M2i,j.

Then Ni is merely a block of 2i−1 integers (starting at zero), followed by a gap of equal size,
then a block, and so on. Let Ci = K(Ni). It is easy to verify that these Ci have the above
stated properties.

The previous corollary and examples illustrate that in special cases, one can have very
nice intersection properties of combs. But the general situation is much more complicated,
in that the intersection of two arbitrary combs can result in most unusual sets, even if the
two combs to be intersected have identical shade. In some cases, we are guaranteed that
the intersection will be a comb of positive Lebesgue outer measure. In fact, if A and B are
combs with

sh(A) = a ∈ (0, 1), sh(B) = b ∈ (0, 1), and a + b > 1,

then for any bounded nonempty interval J ,

µ(A ∩B ∩ J) ≤ min (a, b)µ(J) < µ(J),

and

µ(A ∩B ∩ J) = µ(J)− µ((Ac ∪Bc) ∩ J)

> µ(J)(a + b− 1)

> 0,

so that
0 < µ(A ∩B ∩ J) < µ(J).

Hence, A ∩ B is a comb with positive shade, relative to µ, and hence has positive Lebesgue
outer measure. But we cannot guarantee that the measure of A ∩ B ∩ J is independent of
µ. And it is clear that we cannot expect that A ∩ B is a comb with constant shade, as we
illustrate in the next example.

Example 5.6 Let C1 and D1 be combs with

sh(C1) = sh(D1) = 3/4 and sh(C1 ∩D1) = 1/4,

and let C2 and D2 be combs with

sh(C2) = sh(D2) = 3/4 and sh(C2 ∩D2) = 1/2
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(we have made use of the Corollary to Theorem 5.1). Then letting

A = ((−∞, 0] ∩ C1) ∪ ((0,∞) ∩ C2),

B = ((−∞, 0] ∩D1) ∪ ((0,∞) ∩D2),

we see that A and B are combs with shade 3/4, but that

µ(A ∩B ∩ J) =

{
µ(C1 ∩D1 ∩ J) = (1/4)µ(J) if J ⊂ (−∞, 0]
µ(C2 ∩D2 ∩ J) = (1/2)µ(J) if J ⊂ (0,∞).

Thus A ∩B is a comb whose shade is not constant on R.

We can see that by using Theorem 5.1 and taking intersections with intervals, as in the
above example, we can build combs whose shades are given by step functions. The next
question is then, can we construct combs whose shade varies continuously, by passing to
smaller and smaller intervals? The affirmative answer to this question is the result of the
next theorem.

Theorem 5.7 Let f : R → [0, 1] be continuous. Then there exists a set F ⊂ R such that

lim
µ(J(x))→0

µ(F ∩ J(x))

µ(J(x))
= f(x), ∀ x ∈ R,

where J(x) denotes an interval containing x.

Proof. For each n ∈ N, we define a two-valued simple function

fn : R → {0, 2−n}

as follows. Let f0 ≡ 0 on R and for n ≥ 1, let

Sn = {x ∈ R : f(x)−
n−1∑

i=0

fi(x) > 2−n},

and let

fn(x) =

{
2−n if x ∈ Sn

0 if x 6∈ Sn.

It is clear that for each n,

Sn =
2n−1⊎

i=1

f−1
(

2i− 1

2n
,
2i

2n

]

and that
n∑

i=1
fi(x) → f(x) uniformly on R as n →∞. We let

F =
∞⊎

n=1

Cn ∩ Sn,
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where {Cn}∞n=1 is any pairwise disjoint family of combs such that sh(Cn) = 2−n for each
n ∈ N. It can readily be shown that F has the desired properties, and we omit the details.
2

The continuity of f ensures that the limit need only involve intervals containing the point
x. If f were only, say, piecewise continuous, this limit could differ to the left or right of a
discontinuity. This motivates the following definition.

Definition 5.8 Let F ⊂ R, and let µ ∈ M. For each x ∈ R, we define the upper right
µ-shade sh+

µ (F )(x) of F at x, and the lower right µ-shade sh+
µ (F )(x) of F at x, by

sh+
µ (F )(x) = lim sup

h→0+

µ(F ∩ [x, x + h))

h

and

sh+
µ (F )(x) = lim inf

h→0+

µ(F ∩ [x, x + h))

h
.

Similarly, we define the upper left µ-shade and lower left µ-shade of F at x by

sh−µ (F )(x) = lim sup
h→0+

µ(F ∩ (x− h, x])

h

and

sh−µ (F )(x) = lim inf
h→0+

µ(F ∩ (x− h, x])

h
,

respectively. If these quantities do not depend on the particular µ ∈ M, we call them the
upper right shade sh+(F )(x) of F at x, etc. If we define the function F0 : R → [0,∞) by

F0(x) =





µ([0, x) ∩ F ) if x > 0
0 if x = 0
µ((x, 0] ∩ F ) if x < 0,

then we recognize the above four defined quantities as the so-called derivates of F0, that is,

sh+
µ (F )(x) = D+F0(x) := lim sup

h→0+

F0(x + h)− F0(x)

h
,

sh+
µ (F )(x) = D+F0(x) := lim inf

h→0+

F0(x + h)− F0(x)

h
,

sh−µ (F )(x) = D−F0(x) := lim sup
h→0+

F0(x)− F0(x− h)

h
,

sh−µ (F )(x) = D−F0(x) := lim inf
h→0+

F0(x)− F0(x− h)

h
.

If sh+
µ (F )(x) = sh+

µ (F )(x), then the common value may be called the right µ-shade sh+
µ (F )(x)

of F at x, and similarly we may define the left µ-shade sh−µ (F )(x) of F at x. In turn, if these
two quantities exist and are equal, we call the common value the µ-shade shµ(F )(x) of F at
x. Again, if these three quantities are independent of µ, then they may be called the right
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shade sh+(F )(x), the left shade sh−(F )(x), and the shade sh(F )(x) of F at x, respectively.
These quantities are the right derivative, left derivative, and derivative, respectively, of F0

at x. Well known facts from analysis guarantee us that if F is any subset of R, then our
function F0 is nondecreasing, so F0 is differentiable almost everywhere. Thus the shade of F
is defined at almost all points of R. If F is Lebesgue measurable, then the upper and lower
shades of F can take only the values 0 or 1 (cf. [18]).

We make several remarks.

Remark 5.9 We note that our use of the term “shade of A” prior to the last definition
has been consistent, since the shades of our combs have been constant functions, with the
exception of Example 5.6. In that example, the shade of A ∩ B is not defined at x = 0,
however, the left and right shades are:

sh+(A ∩B)(x) =

{
1/4 if x < 0
1/2 if x ≥ 0,

sh−(A ∩B)(x) =

{
1/4 if x ≤ 0
1/2 if x > 0.

Remark 5.10 We can restate Theorem 5.7 as follows:
Given a continuous function f : R → [0, 1], there exists F ⊂ R such that sh(F ) = f .

Remark 5.11 It is easy to see that the above is also true for piecewise continuous functions,
so long as either f(x+) = f(x) or f(x−) = f(x) at each x.

Remark 5.12 It is not difficult to see that since shµ(F ) is always a Lebesgue measurable
function, it follows that for any Lebesgue measurable set E, we have

µ(E ∩ F ) =
∫

E
shµ(F ) dλ.

This generalizes Theorem 3.11.

Remark 5.13 Results analagous to Theorem 5.1 and its corollary remain true with shades
that are piecewise continuous functions. An affirmative answer to Problem 2 would imply
its truth with shades a and b replaced by piecewise continuous functions.

6 Archimedean Sets

As was remarked earlier, all of the Archimedean sets mentioned thus far have been combs
of constant shade. We shall see that if an Archimedean set is a shading, then its shade is
constant. But is every Archimedean set a shading? We only partially answer this question.

Theorem 6.1 Let µ ∈ M and let A be an Archimedean set. Then for any bounded
nonempty interval J , the quantity

µ(A ∩ J)

µ(J)

is a constant independent of J . Hence, shµ(A) exists and is constant on R.
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Proof. We only sketch the proof, since it is similar to that of Theorem 3.6. Let τ(A) denote
the set of Archimedean translators of A, that is,

τ(A) = {t ∈ R : A + t = A}.
First, assume that J1 and J2 are two nonempty bounded intervals of equal length. Then it
is easy to see that µ(A ∩ J1) = µ(A ∩ J2), using the fact that τ(A) is dense in R, and the
translation invariance of µ. Therefore the theorem is true for intervals of unit length. From
here it is easy to pass to intervals of rational length, and then using a limiting argument, to
intervals of any finite length. 2

What we have not shown, of course, is that the constant referred to in the statement of the
above theorem is independent of the choice of µ, and we must leave this unsolved:

Problem 3 Is every Archimedean set a shading?

It is easy to see that for an Archimedean set A, the set of Archimedean translators τ(A) is an
additive group (in [15] Archimedean sets are mentioned as special cases of locally compact
abelian groups which have a character whose kernel is dense and not Haar measurable). One
can then define an equivalence relation on R by means of

x ∼ y ⇔ x− y ∈ τ(A).

We can write
R =

⊎

γ∈Γ

Aγ,

for some index set Γ ⊂ R, where Aγ = γ + τ(A) for each γ ∈ Γ. We see that each Aγ is
Archimedean with τ(Aγ) = τ(A), and so for any Γ′ ⊂ Γ, the set

Γ′ + τ(A) =
⊎

γ∈Γ′
Aγ

is Archimedean. We also have that

A =
⊎

γ∈Γ∩A

Aγ, (11)

and
Ac =

⊎

γ∈Γ∩Ac

Aγ.

An elementary group-theoretic argument shows that Γ cannot be finite, and we conclude
that each Aγ also has zero shade (for any µ ∈M).

Assume that A is Archimedean and that shµ(A) = a ∈ (0, 1). Given the facts of the
preceeding paragraph, especially (11), it is not unreasonable to conjecture, at least for a
fixed µ ∈M, that for b ∈ (0, a), some subset Γb of Γ ∩ A might be chosen such that

shµ(
⊎

γ∈Γb

Aγ) = b.

In other words, we have another problem:

Problem 4 For a fixed µ ∈ M, do Archimedean sets necessarily have every (or even any)
µ-shade of subcomb?
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7 Shadings in Other Extensions of λ

In [7, p.117], Harazishvili gives an example of a set A ⊂ R which has the property

ν(A ∩ E) =
1

2
λ(E) (12)

for any Lebesgue measurable set E ⊂ R, where ν is any isometry invariant extension of λ
containing A in its domain of definition (see Example 4.6). But he points out that extensions
ν which are only translation invariant need not satisfy (12). In [6, p.71], it is pointed out that
one can extend λ to measures, though not necessarily translation invariant, on σ-algebras of
the form

{(E1 ∩ A) ∪ (E2 ∩ Ac) : E1, E2 are Lebesgue measurable},
where A is as above, by defining ν by means of

ν((E1 ∩ A) ∪ (E2 ∩ Ac)) = a λ(E1) + b λ(E2), (13)

where a and b are any two numbers in [0, 1] for which a + b = 1. It is clear, however, that
such extensions cannot be further extended to finitely-additive isometry invariant measures
on 2R unless a = b = 1

2
.

Many translation invariant extensions of λ are known, most notably those due to Kaku-
tani and Oxtoby [5], who obtained extensions to very large σ-algebras. (See [2] for an
extensive bibliography on this subject.)

While the methods used in [5] are fairly advanced, a relatively easy method, similar to the
method used to obtain (13), can be used to create non-trivial translation invariant extensions
of λ. Let us say that a set A has the Bernstein property if

A ∩ F 6= ∅ 6= Ac ∩ F for every uncountable closed F ⊂ R (14)

(cf. [12, Problem 2.4.5]). In Theorem 2.8 of [12], it is claimed that if A satisfies this property,
then one can define a translation invariant extension ν of λ on the σ-algebra SA generated
by A and the Lebesgue measurable subsets of R by setting

ν((E1 ∩ A) ∪ (E2 ∩ Ac)) =
1

2
(λ(E1) + λ(E2)),

where E1 and E2 are Lebesgue measurable. The problem with this is that for a measure to be
translation invariant, the σ-algebra on which it is defined must also be translation invariant,
and this need not be the case with SA, as we shall see. In private communications, Professor
Mukherjea has pointed out that the claim of the theorem is at least true for all translations
of sets which do belong to SA. While this author agrees, it turns out that we can construct A
to be such that none of the members of SA (except the Lebesgue measurable ones) belong
to SA under non-trivial translation. Before proceeding to verify these claims, we point out
that the theorem in [12] can be repaired by taking A to be the set in Example 4.6, since
property b) in that example guarantees that the σ-algebra so induced is translation invariant
(for all translators). It is not claimed that this A satisfies the Bernstein property, but only
the weaker property that both A and Ac have nonempty intersection with every closed set
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of positive Lebesgue measure. But the stronger property is not necessary for constructing
the extension of λ. In fact, if it were not for this restriction, our counterexample would be
very easy indeed, since all combs of positive shade necessarily have uncountable intersection
with every set of positive Lebesgue measure.

To verify the claims above, we take the trouble to include a very general and useful theo-
rem, which is interesting in its own right. It was inspired by the construction of Example 4.6
in [7].

Theorem 7.1 Let ∼ denote an equivalence relation on a set E, where E has cardinality
2ℵ0 , and each equivalence class is countable. For x ∈ E, let Sx denote the equivalence class
containing x. Let Ω denote the least ordinal number having cardinality 2ℵ0 , and let Φ denote
any family of subsets of E such that

⋃

F∈Φ

F = E,

card (Φ) = 2ℵ0 ,

and where
card (F ) = 2ℵ0 , for each F ∈ Φ.

Finally, let
{Fα}α<Ω

denote a transfinite sequence of all the elements of Φ, where each element is indexed 2ℵ0

many times, that is,

card {α < Ω : Fα = F} = 2ℵ0 , for each F ∈ Φ.

Then there exists a family
{eα}α<Ω

such that

a) eα ∈ Fα, ∀ α ∈ [0, Ω),

b) Seα ∩ Seβ
= ∅, ∀ α, β ∈ [0, Ω), α 6= β, and

c) E =
⋃

α<Ω Seα .

Proof. Let {xβ : β < Ω} be a well ordering of E and put eα = xγ, where

γ = min{ξ : xξ ∈ Fα \
⋃

β<α

Seβ
}.

Then it is easy to verify, using transfinite induction, that these eα satisfy the requirements
of the theorem. 2
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Corollary 7.2 An index set Γ ∈ E(h) (see 3.3) can be chosen such that

card (Γ ∩ F ) = 2ℵ0 ,

for each closed set F with card (F ) = 2ℵ0 .

Proof. Let E = R, and let

Φ = {F ⊂ R : F is closed and card F = 2ℵ0}.
Then the preceeding theorem applies. 2

We now construct the example which refutes the claim in [12].

Example 7.3 For any h ∈ H, we use the above corollary to choose Γ ∈ E(h) such that Γ
intersects every uncountable closed subset of R. The set Γ + t will also have this property,
for any t ∈ R, and it follows that Ka,b(h, Γ) has the Bernstein property, for any a, b ∈ N, a >
1. Let f : R → (1

2
, 3

4
) be continuous and strictly increasing, and let A be an f -shading

constructed using the disjoint combs

{K2i,2i−1−1(h, Γ)}∞i=1

as a “basis” (see Def. 3.4 and Theorem 5.7). Then A has the Bernstein property, since

Γ ⊂ K2,0(h, Γ) ⊂ A,

and
Γ + 3h ⊂ K4,3(h, Γ) ⊂ Ac.

Let SA denote the σ-algebra

{(E1 ∩ A) ∪ (E2 ∩ Ac) : E1, E2 are Lebesgue measurable}.
We omit the details here, but it is not very difficult to verify that the assumption

((E1 ∩ A) ∪ (E2 ∩ Ac)) + t = (E3 ∩ A) ∪ (E4 ∩ Ac),

for some Lebesgue measurable E1,E2,E3, E4 and some t ∈ R, leads to a contradiction.

Remark 7.4 If we let A = K3,0(h, Γ), where Γ is as above, then no contradiction arises
in defining ν as in (12), if we observe the restriction that the translators are from the set
3hZ + Z. However, all of the translators hZ + Z are are also invariant, and if they are to be
included, then the σ-algebra includes all of the invariant sets of the form

(A0 ∩ E0) ∪ (A1 ∩ E1) ∪ (A2 ∩ E2),

where A0 = A,A1 = A0 + h, A2 = A0 + 2h, and we must have

ν((A0 ∩ E0) ∪ (A1 ∩ E1) ∪ (A2 ∩ E2)) =
1

3
(λ(E0) + λ(E1) + λ(E2)). (15)

Invariance of this type, where the set of invariant isometries form a subgroup G of all
isometries on the space, is referred to in [7] as G-invariance and measures such as ν in (15)
are called G-measures.
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Remark 7.5 The above construction shows how easy it is to obtain sets which have the
Bernstein property. In fact, for any piecewise continuous function f : R → [0, 1], one can
construct an f -shading with the Bernstein property. This might lead one to wonder whether
Theorem 7.1 and its corollary are really necessary to achieve this property. That they are
necessary can be seen1 by noting that there exists a Γ containing a perfect set ([10]). Also,
sets like the set A of Example 4.6 can fail to have the Bernstein property, since there exists
a Hamel basis containing a perfect set ([4], [9, pp.220-221]).

Remark 7.6 Sets with the properties of the set A in Example 4.6 can certainly be con-
structed that do have the Bernstein property, and had this been required rather than prop-
erty a), the author of [7] could have included it at no extra cost. We sketch the construction
of this set as an application of Theorem 7.1, and to give the reader a better understanding
of the structure of the set in Example 4.6 to which we have made so many references. We
do this by means of the following corollary to Theorem 7.1.

Corollary 7.7 A Hamel basis V for R over Q exists for which

card (V ∩ F ) = 2ℵ0 ,

for each closed set F with card (F ) = 2ℵ0 .

Proof. Let {vα}α<Ω be any Hamel basis for R over Q. For each α < Ω, let Tα denote the
span of {vβ}β<α, that is,

Tα =

{
n∑

i=1

qivβi
: qi ∈ Q, βi < α, n ∈ N

}
,

and let Uα = Tα+1 \ Tα. We note that Tα is countable for each α < Ω, so that Uα is as well,
and that {Uα}α<Ω is a pairwise disjoint family of sets whose union is R and thereby defines
an equivalence relation on R:

x ∼ y ⇔ {x, y} ⊂ Uα, for some α < Ω.

Let E = R, let
Φ = {F ⊂ R : F is closed and card F = 2ℵ0},

and apply the preceeding theorem. It is easy to verify that the set {eα : α < Ω} thusly
obtained forms a new Hamel basis V with the properties we require. 2

We note that in [7], a Hamel basis V with the properties given above is obtained directly,
without the intermediate Hamel basis, by methods similar to the proof of Theorem 7.1.
The set A is now constructed as follows. Let the Hamel basis V obtained above have a
well-ordering, say ¹, which is order-isomorphic to Ω. For a given x ∈ R, we have a unique
expansion

x =
n(x)∑

i=1

q(x, i)v(x, i),

1—thanks to the wisdom of the anonymous referees, to whom I am indebted for spotting many imperfec-
tions in the original manuscript.
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where q(x, i) ∈ Q and v(x, i) ∈ V for each i, with

v(x, 1) ≺ v(x, 2) ≺ · · · ≺ v(x, n(x)).

We then let
A = {x ∈ R : q(x, n(x)) > 0}.

The details of verifying the alleged properties of A are given in [7] and we omit them.

Remark 7.8 Given that property (12) holds for every ν ∈ M, it would be of interest to
know if there exists a µ which is a translation invariant extension of λ to 2R, for which
µ(A ∩ E) 6= 1

2
λ(E), for some Lebesgue measurable set E. We generalize this question as

follows:

Problem 5 Does there exist an α-shading A , a translation invariant extension µ of λ to
2R, and a bounded nonempty interval J ⊂ R such that µ(J ∩A) 6= α λ(J)? (If so, the shade
of A must rely on invariance with respect to reflection about a point, as does, Example 4.6.)

8 Conclusion

The facts and examples in this paper merely scratch the surface. The interested reader will
no doubt see many problems that the author has omitted. For instance, we know that for a
set A of constant shade,

T (A) := {sh(A ∩ (A + t)) : t ∈ R}

must be contained in the interval

UA := [max(0, 2 sh(A)− 1), sh(A)].

Can A be such that T (A) = UA? In view of Remark 4.9, one can see that T (A) can be
a singleton, while Example 4.7 shows that T (A) can be countable and dense in UA. Can
T (A) be finite but contain more than one element? The author can show that it is easy to
construct examples of A which are countable unions of Archimedean sets, for which T (A)
contains a sequence of shades {si}∞i=1 which approaches the shade of A. Can such values si

be prescribed? It is likely that many results from the theory of uniformly-distributed and
well-distributed sequences of integers can be brought to bear on such questions, at least for
certain Archimedean sets and their countable unions (in view of Remark 3.10).

We have not even mentioned shadings in Rn for n > 1. Clearly, the definition of shading
would have to be changed for n ≥ 3, but one can consider “G−shadings” for a group G of
isometries on Rn. But R2 is interesting enough. Let λ and µ now represent the Lebesgue
measure in R2 and any isometry invariant total extension of λ to the power set of R2. It is
obvious that if A and B are any of the constant shadings of the line presented in this paper,
then

µ(E ∩ (A×B)) = sh(A)sh(B)λ(E). (16)
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But it is only obvious because we know how such sets are constructed, and so the same basic
manipulations (translations, etc.) can be performed in R2 to verify equation (16). But if A
and B are any two arbitrary combs of constant shade in R, it is not at all obvious that their
product is a comb of constant shade in R2 (although it seems likely).

Also, can a subset D ⊂ R2 be constructed for which every line in R2 intersects D to
form a constant shading of R?

Another interesting problem would be to see if shadings A of R can be created with
arbitrary constant shade, which satisfy the Sierpiǹski property

A
.
= A + t, ∀ t ∈ R.

We could go on, but will stop here, hoping that this article might spark some interest in
what are, in this author’s opinion at least, very interesting and beautiful sets.
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