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Some remarks concerning the
uniformly gray sets of G. Jacopini(**)

Abstract. — In a 1995 paper by G. Jacopini, a σ-
algebra H of subsets of R is constructed, and a translation-
invariant measure ν extending the Lebesgue measure λ is
defined on H, such that for each r ∈ [0, 1] there are E ∈ H

for which ν(E∩A) = r λ(A) for all Borel subsets A. Given
these properties, it can be suggested, as an intuitive in-
terpretation, that such sets as E are ¿uniformly grayÀ.
The main purpose of this note is to discuss the extent to
which such an intuitive characterization is reasonable for
sets having the above properties. Also mentioned are some
other results, similar to Jacopini’s, which have been pub-
lished elsewhere.

Alcune osservazioni sugli insiemi

uniformemente grigi di G. Jacopini

Riassunto. — In un articolo del 1995, G. Jacopini esi-
bisce una σ-algebra H di parti di R e una misura ν su di
essa definita, invariante per le traslazioni, prolungante la
misura di Lebesgue λ e tale che, per ogni numero reale r
compreso tra 0 e 1, esista un elemento E di H verificante la
relazione ν(E ∩A) = r λ(A) per ogni insieme boreliano A.
Questa proprietà di E può suggerire, dal punto di vista in-
tuitivo, l’idea di un insieme ¿uniformemente grigioÀ. Lo
scopo principale della presente nota consiste nel discutere
fino a qual punto una simile interpretazione intuitiva sia
ragionevole, anche alla luce di risultati analoghi a quello
di Jacopini, pubblicati da altri autori.

In the 1995 paper [4] of G. Jacopini, the following result, which we shall call
Theorem J, is stated and proved.

(*)Indirizzo dell’Autore: Department of Mathematics, Louisiana State University in Shreve-
port, Shreveport, LA 71115-2399, USA.
(**)Memoria presentata il 21 luglio 1998 da Giorgio Letta, uno dei XL.
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Theorem: There exists a σ-algebra H of R, properly con-
taining the Borel σ-algebra, and a measure ν on H extending
the Lebesgue measure λ and having the two following prop-
erties:
(a) ν is translation-invariant, in the sense that for each ele-
ment A of H and each real number t, one has

A + t ∈ H and ν(A + t) = ν(A).

(b) For each real number r between 0 and 1, there is an
element E of H such that for every Borel set A of R, one
has

ν(E ∩A) = r λ(A).

Professor Jacopini offers the intuitive interpretation: “se si immagina di
colorare in nero i punti di E, e in bianco quelli del complementare,”1 then such
sets as E can be thought of as being “¿uniformemente grigioÀ”2.

In the 1991 paper [14], the author of the present note gives various con-
structions, some not too dissimilar from the above (see, e.g., Example 4.7 of
that paper), of subsets of R called shadings, and whose definition (below) also
suggests ¿shades of grayÀ. (In case the notion of color or shade on a line is
not intuitively appealing, we mention that similar constructions can be given
for subsets of the plane.)

Even though it was not explicitly stated in [4], we naturally would hope
to associate the number r mentioned in the theorem with the ¿darknessÀ,
¿gray-scaleÀ or ¿shade of grayÀ, the shades increasing continuously from
white (r = 0) to black (r = 1).

What we shall discuss now is the extent to which it may or may not be
reasonable to consider such sets as those with properties (a) and (b) described
in Theorem J as actually having a definite shade of gray in any sense whatso-
ever. In fact, to the contrary, we note the existence of σ-algebras of subsets of
R equipped with translation-invariant measures, each of which share the prop-
erties (a) and (b) in Theorem J, but for which it is clearly not reasonable to
think of the number r as having anything whatsoever to do with an increas-
ing gray-scale as described above. A notable case is found in the famous 1950
paper [5] of Kakutani and Oxtoby, in which a nonseparable extension of the
Lebesgue measure is constructed, which is isometry-invariant and whose char-
acter is maximal (2c). (We will use the symbol c to refer to the cardinality

1English translation: “if one imagines coloring the points of E with black and the points
of the complement with white”

2“¿uniformly grayÀ”
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of the continuum, and also, when convenient, the smallest ordinal having this
cardinality.) To make our point, we need only observe the following, which is a
consequence of the construction in [5].

Proposition: There exists a σ-algebra K of R, properly containing the

Borel σ-algebra, and a family of measures {να}α<c, each να defined on K and

extending the Lebesgue measure λ, such that the two following properties hold:

(a) Each να is translation-invariant, in the sense that for each element A of

K and each real number t, one has

A + t ∈ K and να(A + t) = να(A).

(b) For every transfinite sequence (rα)α<c whose members are contained in

the unit interval [0, 1], there is an element C of K such that for every Borel set

A of R, one has (for the same C)

να(C ∩A) = rα λ(A) ∀α < c.

We emphasize that the σ-algebra K and the family of measures {να}α<c

are fixed; C depends only upon the sequence (rα)α<c. In particular, all of the
rα may be chosen to be distinct. So what we have is a family of translation-
invariant extensions of λ, each measuring C differently. We sketch the proof of
this proposition below.

In what follows, the cardinality of a set X is denoted by |X|. A subset X of
R will be called almost invariant with respect to a group G of transformations
on R provided that |X 4 g(X)| < c, for all g ∈ G.

Sketch of proof of Proposition: The necessary fact is that there exists
a family {Cα}α<c of subsets of R such that:

(1) {Cα}α<c is a partition of R, i.e.,

R =
⊎
α<c

Cα.

(We use
⊎

to emphasize disjoint unions.)

(2) Each Cα is almost invariant relative to the group of all isometries on R.

(3) If A is a Borel subset of R and λ(A) > 0, then Cα ∩A 6= ∅ for each α < c.
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These properties imply that for each α < c, the set Cα has zero inner measure
and full outer measure. (I.e., λ∗(Cα) = 0 and λ∗(Cα∩A) = λ(A) for each Borel
set A. Thus, Cα is saturated nonmeasurable). We let L denote the Lebesgue
measurable sets, C the family {Cα}α<c, and N the noncontinuum subsets of
R (i.e., X ∈ N iff |X| < c). Then the σ-algebra K generated by C ∪ L is
translation-invariant and contains elements of N.

Since ℵ0 · c = c, we may subdivide the partition C as follows:

C =
∞⊎

i=1

⊎
α<c

C(i)
α .

With these properties, if (x1, x2, x3, . . . ) is any sequence whatsoever of nonneg-

ative numbers for which
∞∑

i=1

xi = 1, then measures {να}α<c may be defined on

K by means of the assignments

να(X) = 0, ∀X ∈ N ∩K,

and

να(C(i)
β ∩A) =

{
xi λ(A) if β = α
0 if β 6= α

∀A ∈ L, i = 1, 2, 3, . . . .

Specifically, we shall take
xi = 1/2i, ∀i.

For each x ∈ [0, 1], let

x = 0.b1(x) b2(x) b3(x) · · · (base 2)

be the usual dyadic (nonterminating) expansion of the number x, and let

N(x) = {i : bi(x) = 1}.

Then ∑

i∈N(x)

xi = x,

and so, letting
C =

⋃
α<c

⋃
{C(i)

α : i ∈ N(rα)},

it is easy to verify that the measures {να}α<c and the set C will have the desired
properties. ¤
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Thus, the set C may be considered to have an arbitrarily assigned (although
uniform) shade of gray, with respect to such measures, including completely
black (r = 1) or white (r = 0). Given this ambiguous situation, it is not
reasonable to associate with the set C any definite shade whatsoever.3

In connection with this, we should mention that in [6], A.B. Kharazishvili ob-
serves this phenomenon of ambiguity, referring also to the construction in [5], by
noting that “the uniqueness property [relative to the class of isometry-invariant
extensions of λ] so characteristic for Lebesgue measure is violated here.” Briefly,
for our purposes, a subset X of R has the uniqueness property in a class M of
extensions of λ provided that X is µ-measurable for some µ ∈ M and that
whenever X is µ′-measurable for some µ′ ∈ M, then µ(X) = µ′(X). See, for
example, the extensive monograph [9] (§7) or the paper [8].

In the same paper [6], Kharazishvili then proceeds to construct a nonsepa-
rable isometry-invariant extension of λ (having character c) which does indeed
have the uniqueness property in the class of all isometry-invariant extensions of
λ. In fact, while not explicitly stating it in [6], the measure constructed therein
shares the very same properties of the measure ν as set forth in the statement of
Theorem J. Having the uniqueness property in addition to the aforementioned
properties, the sets so obtained might be said to have specific, definite shades
of gray.

For comparison, let us now suggest another approach to describing shades
of gray. Recall that a Banach measure on R (resp., R2) is an isometry-invariant
extension of the Lebesgue measure λ defined on all subsets of R (resp., R2).
Such a measure, whose existence is guaranteed by the Hahn-Banach theorem,
is only finitely-additive. (See the excellent book [15] of Stan Wagon for many
details concerning Banach measures.)

Definition: (cf. [14]) Let B denote the class of all Banach measures on R.
If D is a subset of R for which there is a number r ∈ [0, 1] such that

µ(D ∩A) = r λ(A)

for all bounded Borel sets A and all µ ∈ B, then we call r the shade of D, and
we write sh(D) = r. We call D an r-shading of R.

3One wonders if it is even reasonable to ask, “What does such a set really look like?” for
a set such as C, or indeed, for any of the sets mentioned in this note.
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Simply put, this definition requires that such a shading of R has uniform4

density and the uniqueness property in the class B.
In spite of the restrictions associated with finite-additivity, there are advan-

tages in defining the shade of a set as above, rather than, say, requiring that sets
have uniform density and the uniqueness property in the class of all countably-
additive isometry-invariant extensions of λ. For one thing, the disadvantage of
finite-addivity is greatly offset by the advantage of being able to measure all
sets! (For interesting discussions of the relative merits of various extensions of
Lebesgue measure, see the articles [1] and [2].) But moreover, consider the fol-
lowing subset W of R, which has shade equal to zero5 ([14], Example 4.2). Let
H be a Hamel basis for R (over Q) and fix any single element h ∈ H. Define
W to be the set of all x ∈ R for which the rational coefficient of h is zero in
the representation of x with respect to H. Then R is partitioned into countably
many disjoint translates of W :

R =
⊎

q∈Q
(W + qh).

As we mentioned, sh(W ) = 0, which is certainly intuitively appealing in view
of the observed partition. But the shade cannot be described in terms of
countably-additive extensions of λ, for the set W is not even ν-measurable for
any countably-additive translation-invariant extension of λ. (I.e, W is absolutely
nonmeasurable in this class of measures. See, e.g., [9, §4], [12, §2], or [7].) To
see this, observe that if ν(W ∩ [0, 1)) = 0, then one obtains the contradiction
ν(R) = 0, because the union of countably many disjoint translates of W ∩ [0, 1)
can equal all of R. On the other hand, if ν(W ∩ [0, 1)) > 0, then one obtains the
contradiction ν([0, 1)) = ∞, by observing that for every ε > 0, infinitely many
disjoint translates of W ∩ [0, 1) exist in [0, 1 + ε).

It must also be noted that in [12, §8], a construction is given which has a
great deal in common with the construction in [4]. (The construction may also

4We should also add that the notion of shade can be generalized as follows. If f : R→ [0, 1]
is a continuous function, then there exists a subset D of R for which the shade at each
point x ∈ R, denoted by sh(D)(x), exists and is equal to f(x), where sh(D)(x) is defined by
limδ→0+ µ(D ∩ (x − δ, x + δ))/(2δ), the values of µ(D ∩ (x − δ, x + δ)) being independent of
µ ∈ B. This is proved in [14]. Thus, sets can be smoothly shaded. (See [10] for an analogous
result involving the uniqueness property for countably-additive invariant extensions of λ.)

5The set W is an example of a nontrivial homogeneous set in the sense of [3]: W is
uncountable, not equal to R, and W + w1 − w2 = W for all w1, w2 ∈ W . In that paper it is
proved that every nontrivial homogeneous set has shade equal to zero (although it is certainly
not stated in such terms).
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be found in [11]. Also, see [10] and the famous paper [13] for invariant extensions
of λ using many of the same ideas.)

In particular, on p. 148 of [12], the σ-algebra S of [12] is analagous to the
σ-algebra H of [4]. In fact, using the notation of [12], if one lets 0 ≤ r ≤ 1 and
F = {x ∈ R : (x, f(x)) ∈ R × [0, 2πr)}, then the set F satisfies the properties
possessed by E as stated in Theorem J with the additional property that F is
a Bernstein set.

Our final remark (which perhaps should have been made earlier!) is that,
despite our having gone to such lengths to point out the possible ambiguity of
the shades of sets having the properties stated in Theorem J, it is not difficult
to show that the particular constructions given for E in [4] and F (as above)
in [12] yield sets which do indeed have the uniqueness property (in the class of
all translation-invariant extensions of λ).

In fact, the measures on the σ-algebras S in [12] and H in [4] are uniquely
defined in the class of all translation-invariant extensions of λ (cf. [9]), which
means that all of the elements in S and H have the uniqueness property. (The
same can be said for the measure constructed in [13], as noted in [10].) The
proof of this uniqueness relies upon the essence of the final Remark given in
[4], which we shall put in the following terms: the measure ν has the property of
exhaustion with respect to translations in R. This means that for X ∈ H with
ν(X) > 0, there exist (ti)i∈N for which

ν

(
R \

⋃

i∈N
(X + ti)

)
= 0.

(That is, ν is metrically transitive with respect to X.) And in the class of
translation-invariant extensions of λ, the uniqueness property and the exhaus-
tion property are equivalent (see [6], Proposition 1).

Just one last thing: the sets E and F are r-shadings of R. Furthermore,
this author knows of no subset of R having uniform density and the uniqueness
property (relative to all isometry-invariant countably-additive extensions of λ)
for which X is not also a shading.
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