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This discussion is the promised “Supplement” to the note [0], where most of the
needed terminology is presented.

1 Only M2.

The Brunnian link “AltM2” in [0] is an alternating version of the simple mono-
tone symmetric Venn diagram called “M2” in [11, sec: Examples of Symmetric
Diagrams for small n]. As described in [0], we are considering simple Venn di-
agrams as minimal projections of alternating links. Conversely, we can take a
simple Venn diagram and “lift it to” or “weave it into” an alternating link and
that is what we shall mean when we refer to “the alternating link of a Venn
diagram” or similar phrasings.

The Venn diagram M2 was first discovered by Branko Grünbaum [4, Figure 6]
and was the first known simple symmetric Venn diagram on 7 Venn sets. We
can state here that M2, quite remarkably, turns out to be the only one of
the 56 known simple symmetric Venn diagrams on 7 sets whose alternating
link is Brunnian. We used custom Mathematica programs to assist in this
determination, some of the methods and results of which are described in the
next sections. All 56 examples can now be checked by hand using the data
we provide here and in conjunction with figures and encodings available on
the extensive online dynamical survey [11]. It is an arduous task if done from
scratch, but using our results things can be verified relatively easily.
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The curves of every simple diagram, Venn or not, form an alternating link
diagram when each of those curves are “over-under-ized” by weaving at the
diagram’s crossings as one travels around the curve. The result of doing this
to a simple Venn diagram of order n produces what we call here an alternating
Venn link. If the Venn diagram is (rotationally) symmetric then the result is
an n-component link that is homeomorphic to one that is invariant in R3 under
rotations by 2π/n about an (obvious) axis. We’ll call such a thing a symmetric
alternating Venn link. (Knot theorists usually call such links n-periodic.)

We may also consider symmetric non-alternating links that project to sym-
metric Venn diagrams. Every simple Venn diagram of order n has 2n− 2 cross-
ings, so 126 crossings for n = 7. Cutting a symmetric 7-Venn into identical
sevenths1 generates 126/7 = 18 crossings to consider in the link diagram, where
we get 218 different ways to assign either “over” or “under” at each crossing. For
each such choice, the given crossings can be applied to each seventh in exactly
the same way and a symmetric link results. Given one of these assignments
we can reverse all of its crossings to obtain a new link, but that one will be a
mirror image of the other and we won’t consider that to be different. (That is,
we don’t care here about differences in chirality. If a link is Brunnian, then so
is its mirror image, in a trivial way.) Thus for each symmetric Venn diagram
of order 7 (such as M2), we can check 217 = 131 072 distinct weavings that
produce the entire collection of what we’ll call the diagram’s symmetric Venn
links. These can be tested one by one for cases of Brunnianism.

[Let us interrupt this narrative to ask, Who cares? Well, there is at least
precedent in the article [7], where Brunnian links associated with certain Venn
diagrams are examined. That can suffice as an excuse for our proceedings.
If another motivation is needed, let us acknowledge that Venn diagrams are
interesting in their own right, as are Brunnian links. So it makes sense to ask
when these two interesting objects can be so closely interwined!]

After an exhaustive search for symmetric 7-Venn links, we can report (or
perhaps we should just say, “claim”) that among all the known symmetric 7-
Venns, the only symmetric Brunnian example is the alternating case of M2.
This seems remarkable.

There likewise are no symmetric Brunnian 5-Venns other than the alternat-
ing one in Figure 8 (also shown in Figure 4 of [0]). For n = 3 and n = 2, the
alternating forms give the only Brunnian cases, in the form of the Borromean
rings and the Hopf link, respectively (the adjective “symmetric” being redun-
dant in the cases of n = 3 and n = 2, as there is just one simple Venn diagram
for each (see [11])).

Question 1 So what’s up with that? If a symmetric Brunnian link exists, must
it be alternating?

Perhaps when the hundreds of thousands of newly discovered ([8, 9]) simple
symmetric 11-Venns are examined (along with the possibly billions of 13-Venns)
more cases will turn up. Or maybe there will be no Brunnian examples at all.

1Fermat’s little theorem implies that n|2n − 2 when n is prime.
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(A high-stakes beer bet exists between the first author of this article and the
second author of the two cited articles.) A case for pessimism might be this:
It seems reasonable to suppose that when the conditions of alternation and
symmetry are dropped, it should then at least always be possible to find, for
each Venn diagram, some weaving—some set of crossings—that would produce
a Brunnian link. But that turns out not to be true, as noted in the final remark
of [7]. A case for optimism could be, however, that the number of symmetric
diagrams grows explosively for higher n (which must be prime for ths symmetric
cases) and the number of variations in crossings for each such diagram also grows
double-exponentially.

2 Polar, monotone, and non-monotone Venn di-
agrams.

We refer the reader to [11] for definitions of monotone Venn diagrams and
symmetric Venn diagrams having polar symmetry, though neither of these is
really necessary for our discussion. For our purposes the differences mainly have
to do with how the different diagrams are named and listed. Ultimately, though,
monotonicity does play a role here. First because while the precise number of
monotone cases of simple symmetric 7-Venns is known, the same cannot yet be
said with complete certainty for the non-monotone ones. (It is simply easier to
crank out all the monotone cases, which we have done independently, confirming
the list given in [11].) Secondy, non-monotonicity might actually increase the
difficulty in determining Brunnianism in the resulting links. This is hinted at in
the last remark in [7], where results about braid groups are employed. We use
far cruder methods than that, so for us, monotonicity plays no role. We need
only an encoding of the diagram.

3 About the method

For now we’ll consider only the alternating cases of the symmetric 7-Venn links.
Later we briefly mention what happens with the non-alternating versions.

Our initial method for seaching the simple symmetric 7-Venns for Brun-
nanism was admittedly somewhat crude and naive. We’re looking for cases
where every 6-component sublink of the 7 components is unlinked, so the first
thing we can do (since it is easiest) is to eliminate any cases where there are two
linked components. From the survivors of this test we eliminate any for which
some three components are linked, and so on. Notice that when we proceed in
this way, when we come to a “failure”—a sublink with k coponents that is not
unlinked—we automatically have a Brunnian link of order k, examples of which
could well be of independent interest.

Some custom Mathematica code was used to determine the two-link failures,
which were then visually checked, confirmed, and eliminated. The survivors
were checked (at first) completely by hand.
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A second method was later used to confirm what was found. The examples
for which we had graphical renderings (these are the monotone diagrams on [11]
and some of the non-monotones) we converted by hand to Gauss codes. For most
of the non-monotones, we had only the RG encodings listed on [11] to work
with. (Explanations and examples of these will be shown in a later section.)
The RG-encodings suffice to inspect the two-component sublinks. Only one of
these (“N1”) survived this k = 2 stage, and fortunately, there was a graphical
rendering of that available, so we could continue using Gauss codes.

Having the Gauss codes, we then used some more custom routines, along
with the KnotTheory package available on the Knot Atlas website [6] to test
sublinks for Brunnianism by evaluating their Jones polynomials. It suffices
to note, for our purposes here, that the Jones polynomial is a link invariant.
In particular, if the Jones polynomial of a k-component link is distinct from
the polynomial of the trivial link of k components (i.e., the link consisting
of k unlinked unknots), then the link cannot be trivial. We used this to re-
test the 2-component sublinks, then tested the surviving 3-component sublinks,
etc., concluding non-Brunnianism whenever a non-trivial Jones polynomial was
encountered through k = 6.

It must be noted that if the Jones polynomial were the same as that of
the trivial link, we would still not be guaranteed an unlink (as far we know at
present; see Question 3 in section 5), so those cases for which all k-component
sublinks yield trivial Jones polynomials for k = 2 through 6 would need to be
hand-checked. But that did not happen (it would have been cool, though), and
as a result, we only had to check just one: the alternating form of M2.

Some minutiae concerning the checking of the monotone 7-Venns is included
in what follows in order that our claims are more easily independently verifiable.

4 Alternating simple symmetric 7-Venns

There are 23 monotone simple symmetric Venn diagrams of order 7, six of which
have polar symmetry. The latter are labeled P1–P6 in [11], the rest are labeled
M1–M17. The 33 known non-monotone examples are named N1–N33.

We mark the original seven components with the indices 0 through 6, clock-
wise. At the stage k = 2 (2-component sublinks), it suffices then, by the sym-
metry of our links, to check the pairs {0, 1}, {0, 2}, and {0, 3}. Let’s abbreviate
these as 01, 02, 03, and do likewise for other configurations. As an example, the
following illustrates that the diagram N5 is not Brunnian, as it fails with the
pair 01.
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Figure 1: The alternating link on the simple symmetric Venn diagram
N5 and its isolated 01 pair, which is linked.
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It turns out that 11 of the monotones are thusly ruled out for Brunnianism
at the two-component stage, these being M1, M3, M5, M6, M7, M8, M9, M12,
M13, M14, M15. Among the non-monotones, N2–N33 are all ruled out! Figure 4
shows the various ways this happens, but first some explanations are in order.

It turns out that M3, M14, M15, N5, N16, N32, and N33 could be called
maximally non-Brunnian, as they fail for each such pair. (The reader can fairly
easily check all two-component failures by examining the RG-encodings2 or the
“link rendering” images at [11].) Among the monotones, the rest of the two-link
failures occur in exactly two of the pairs 01, 02, and 03. Though it is possible for
three components to be linked in only one pair (simply reverse any one crossing
on the Borromean rings for such a thing) it does not happen here, and we offer
no explanation for that. Except in the three maximally non-Brunnian cases
M3, M14, and M15, the linked pairs above occur in the form of the Hopf link
(Figure 2). The failures in M3, M14, and M15 each occur as two Hopf links and
one “Kramobone” (a link equivalent to the one in Figure 3).

Figure 2: The Hopf link (aka
L2a1 and 221). The simplest non-
trivial link and thus also the
simplest nontrivial (albeit al-
most trivial) Brunnian link.

Figure 3: The “Kramobone”
(aka L4a1, 421, among other
names [6].)

Among the 33 non-monotones, all fail at the 2-component stage, with the
exception of the lone holdout N1. The alternating versions of N5, N16, N32, N33
are maximally non-Brunnian (every pair of components is linked). See [11] for
a colored version of this object and a few other of the nonmonotones, including
N27—the first discovered example of a non-monotone simple symmetric 7-Venn,
which was discovered by none other than Branko Grünbaum [4].

2As described in [11], the RG-encoding “is closely related to the Grünbaum encoding: the
RG-encoding is obtained by following a curve from the interior/exterior face, numbering and
recording the curves in the order that they are encountered.” The Grünbaum encoding instead
numbers the curves sequentially as one travels around the diagram’s outer or inner face. See [1]
for a detailed description, in which the diagram P4 is used as the primary example.
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01 02 03
P1 - - -
P2 - - -
P3 - - -
P4 - - -
P5 - - -
P6 - - -
M1 uo ou -
M2 - - -
M3 uo uo ouou
M4 - - -
M5 uo - ou
M6 - ou uo
M7 uo ou -
M8 uo - ou
M9 uo ou -
M10 - - -
M11 - - -
M12 ou - uo
M13 uo - ou
M14 uouo ou ou
M15 uouo ou ou
M16 - - -
M17 - - -

01 02 03
N1 - - -
N2 ou uo -
N3 ouou - -
N4 uo uo -
N5 ou ouou uo
N6 uouo uouo -
N7 - ou ou
N8 uo - uo
N9 uo - uo
N10 ou ou -
N11 uo uo -
N12 ouou - -
N13 - uo uo
N14 - ou ou
N15 uo uo -
N16 uo uouo ou
N17 uouo - -
N18 uo - uo
N19 ou - ou
N20 - ou ou
N21 ou uo -
N22 ou uo -
N23 uo uo -
N24 uo - uo
N25 ou - ou
N26 ou ou -
N27 uo - uo
N28 uo uo -
N29 ou uo -
N30 uo - uo
N31 ou - ou
N32 uo uouo ou
N33 ou ouou uo

Figure 4: The over and the under for the 2-component links of the
alternating 7-Venns. An “ou” or “uo” designates a Hopf link; “ouou”
and “uouo” are Kramobones. The others are unlinked.

Next we’ll meet several varieties of three-component configurations. So far,
all the polar diagrams have passed the 2-component test.

Question 2 Is there an obvious reason for that or is it a coincidence?

At the next level, though, all but one of the polar diagrams are gone: P1
fails for the triple 014; P2 fails for 014; P3 fails for 012 and 014; P5 fails for 012,
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and P6 fails for 024. Also failing for three components are: M10 for 013; M11
for 024. M16 and M17 each fail for 012. (We note that our symmetry implies
that all possible cases of 3-out-of-7 components can be represented by 012, 013,
014, 015, 024.)

012 013 014 015 024
P1 - - B - -
P2 - - B - -
P3 B - B - -
P4 - - - - -
P5 B - - - -
P6 - - - - B
M2 - - - - -
M4 - - - - -
M10 - B - - -
M11 - - - - ?
M16 B - - - -
M17 B - - - -
N1 - - - - -

Figure 5: The results for the surviving 3-component links of the al-
ternating 7-Venns. The “B” represents the Borromean rings, the ? is
something else! The others are unlinked.

It turns out that among these failures for the triples, all but one are the
configuration of the Borromean rings. The exception is the failure in M11,
which is quite special. We examine it in Section 6.

Meanwhile, P4 survives in the polar region and M2 and M4 are still in the
running, as is N1. We are now checking things by hand, so if failures are to occur,
we want them to happen at the 4-component stage! Mercifully, the failures of
M4 and N1 happen at this stage, each with their 0135 configuration, which is
one of the five distinct 4-component sublinks.

This failure—should we really call it that?—is a Brunnian diagram of order
four that was discovered by Hermann Brunn himself. A nice rendering of it can
be found at [14] and is shown in Figure 6, along with a version obtained from a
form of M4 from [11].
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Figure 6: Alternating form of M4; the Brunnian 0135 configuration of
same; a simplification based on [14]

.

On to level 5—there are only P4 and M2 remaining; it suffices to check
configurations 01234, 01235, 01245. There are no failures, each of these config-
urations is unlinked! (But it took a while to determine that.)

Level 6—check just 012345. And now here is something: We find that P4
fails with the Brunnian link of order 6 shown in Figure 7.
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Figure 7: Alternating form of P4; its 012345 Brunnian configuration;
our simplification.

And with that, the sole surviving symmetric alternating Venn diagram of
order 7 is M2, a symmetric Brunnian link of order 7.

After this strenuous and naive endeavor, we finally took the time to learn
a bit more. What would the experts do? While we do not presume to answer
that question, we did verify all of the above by computing Jones polynomials
using the code available at the KnotAtlas website [6]. (This was not without its
own challenges, but that is too long a saga to go into here.)

5 More questions

Question 3 If a link projects to a union of simple closed curves (topological
circles) and has a trivial Jones polynomial, is the link trivial?
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If not, then the link has the same (trivial) Jones polynomial as a trivial
link.3 So far this seems possible, as we alluded to in section 3. There are indeed
nontrivial links whose Jones polynomials are trivial, as is dramatically shown in
the paper [3]. But in that paper, the examples of such links have some compo-
nents that are proper knots (i.e., not unknots; not simple closed curves). On the
other hand, there exist distinct nontrivial links whose projections are unions of
closed curves and whose Jones polynomials are identical, but not trivial. (For
instance, different connected sums of three Hopf links can be used [10].) So it
is natural to ask if there are conditions (such as the one we entertain of unions
of topological circles) under which the Jones polynomial can distinguish linked
links from unlinks.

Question 4 Are there more Brunnian links projecting to simple symmetric
Venn diagrams?

By “more” we mean those other than the ones for n = 2, 3, 5, 7 already
mentioned. And the answer to this question is “Yes.”

It turns out that there is only one simple symmetric Venn diagram on 5
sets [11]; its corresponding alternating link turns out to be Brunnian; see Fig-
ure 8. If our computations are correct, then the alternating link is the only
Brunnian link among the 32 possible (three-dimensionally) symmetric weaves
of this Venn diagram.

On the other hand, if the weaves aren’t required to be symmetric, then there
is exactly one more Brunnian weave on that same Venn diagram, also shown
in Figure 8. (The non-symmetry is easy to spot by looking at the components
numbered 0 and 4; on one of the figures they do not alternate.) The visually
verifiable Brunnianism of the alternating version is discussed in Section 3 of [0].
For the other, it is easy enough to tease apart all the four-component sublinks
using a graphics program. (Note that the lack of symmetry means that all
five 4-component sublinks need to be checked and found to be unlinked.) To
show that the full five-component link is itself linked, try computing any of the
known link invariants. The Jones polynomial, for instance, differs from that of
the five-component unlink, which settles the matter.

3The Jones polynomial of n unlinked components is (−1− t)n−1 times a power of t.
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Figure 8: The alternating Brunnian link on the simple symmetric Venn
diagram on 5 sets and a non-alternating, non-3D-symmetric version.
(Wait, which is which?) They differ at four crossings.

For anyone willing to confirm the claims above, here are glimpses of the
“rational” parts of the Jones polynomials we calculated for the two links in
Figure 8:

−(1 + t)2(1 − 7t · · · − + · · · + 146t6 − 158t7 + 146t8 · · · − + · · · − 7t13 + t14)
and

−1 + 15t · · · − + · · · − 932950t14 + 973374t15 − 932950t16 · · · − + · · · + 15t29 − t30.

For the 56 known symmetric 7-Venns, there are likewise no more symmetric
Brunnian cases, as we mentioned earlier. It is presently unknown if there exist
more than the 33 non-monotones listed in [11], though it is conjectured not
in [11]: “We believe that these are all of the simple symmetric non-monotone
diagrams for n = 7.” If that turns out to be wrong, then maybe there are also
more symmetric alternating Brunnian 7-Venns.

Again, if symmetric weaving is not required, there are more Brunnian ex-
amples among the 56 symmetric 7-Venns, probably a great many. By switching
small numbers of crossings along one component of the alternating version of
M2, for instance, we found this one (the switched crossings are marked):
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Figure 9: A non-alternating, non-7-periodic, Brunnian weave of M2.

Given the non-symmetric examples above then, we refine the question.

Question 5 Other than the Hopf link for n = 2, the Borromean rings for n = 3,
the symmetric link above for n = 5, and AltM2 for n = 7, are there any more
three dimensionally symmetric Brunnian links projecting to simple symmetric
Venn diagrams?

The answer might be yes for non-monotone symmetric 7-Venns if more than
the presently known 33 cases are ever found to exist. And of course there is a
new plethora of simple symmetric 11- and 13-Venns ([8], [9]), though the testing
of these could be prohibitively time consuming unless some clever ways to rule
out large classes can be found. The tricks of [7] might help.

At the moment, however, our only examples of symmetric Brunnian links on
the simple symmetric Venn diagrams are alternating. That prompts the next
version of the previous question.

Question 6 Are there more alternating symmetric Brunnian links on simple
symmetric Venn diagrams?
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Again, the answer to the question might be yes for non-monotone symmetric
7-Venns, but only if new ones are discovered. And there might be examples for
n > 7. Another possibility is that we have made errors in our computing! All
of what is presented here needs verification and confirmation. But based on our
evidence thus far, the following becomes intriguing. (This really just Question 1
with the Venn part added.)

Question 7 Must a symmetric Brunnian link on a simple symmetric Venn
diagram be alternating?

And while we have here stuck to symmetric Venn diagrams, there is a bigger
universe out there.

Question 8 What about non-symmetric simple Venn diagrams?

In [7], a family of Brunnian Venn diagrams on n sets is constructed for
all n ≥ 3. The construction starts with n = 3 (the Borromean rings) and
recursively constructs Brunnian links that project to a family of simple Venn
diagrams constructed by Edwards [2]. These are not alternating links and the
diagrams are not symmetric.

Also in [7], all the 5-Venns were considered for possible Brunnianism. Using
some braid theory, the authors determined that one of those had no possible
Brunnian weaves whatsoever, while others did have Brunnian weaves. Their
braid-theoretic notions did not allow them to test the non-monotone cases, but
we have done that using brute force. The results of that endeavor, as well as
some remarks about Brunnian examples of the 4-Venns will be saved for another
time.

6 Marilyn

We said there is something special in M11 — the “failure” at the 3-link stage, in
which we get a 3-component linked sublink of the alternating, symmetric M11
Venn diagram. It is Brunnian, but it is not the Borromean rings.
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Figure 10: The alternating link on the simple symmetric Venn diagram
M11 and its isolated 024 components, which are linked.

When Laura McCormick teased this out of M11, she simplified it in two
striking ways:

Figure 11: Two simplifications of M11-024 by Laura McCormick.

The right-hand figure reminded me of a cross and the other of the Star of
David. This struck me as nicely pseudo-symbolic, a harmonization of two of
the world’s great religions. At the time, my cousin, Marilyn Henry [16], was
fighting a losing battle with cancer. 4 I dubbed the link “Marilyn’s Cross” in
her honor.

Very shortly thereafter, in a stroke of stunning serendipity, an issue of Math
Horizons arrived. Marilyn’s Cross was on the cover! But it was not Laura’s, it
was David Swart’s [13] sand sculpture!

4That is not the correct way to put it! See [5].
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Figure 12: “It is what it is” — photo by David Swart.

After admiring his photo5, we were in contact with David, who told us of
his communication6 with Dror Bar-Natan about the discovery and the quest
to identify it as one of the known Brunnian links. At the time, for some rea-
son, Professor Bar-Natan and company were unable to identify the link, even
though they were aware of the link that it indeed turned out to be. Perhaps
that was because they were looking only among the known 12-crossing links,
which is the form David Swart (and we) had discovered. The link is equiva-
lent to “L10a140” [15],[6] (the 140th alternating link with 10 crossings in the
Thistlethwaite Link Table). In any case, the link had a good deal of attention
due to all this.

The middle image below is an alternating form (any which must have 10
crossings) of “It Is What It Is” aka “L10a140” aka “M11-024” aka “Marilyn’s
Cross” etc. This is the same link diagram as the alternating versions at [6]7 I
call it the “Hula Hoop” version by Slavik Jablan (1952–20158), who gives it as
the second in an infinite sequence of 3-component alternating Brunnian links
with 4n+ 2 crossings (n = 1, 2, 3, . . .), the first being the Borromean rings.

5See https://www.flickr.com/photos/dmswart/4878510547/
6See http://drorbn.net/AcademicPensieve/2010-08/one/A_Link_from_David_Swart.

pdf.
7See http://katlas.math.toronto.edu/wiki/L10a140.
8See http://www.mi.sanu.ac.rs/vismath/jablan.html
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Figure 13: Slavik Jablan’s Hula Hoops, n = 1, 2, 3.
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